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The measured spatial coherence characteristics of the illumination used in a diffractive imaging
experiment are incorporated in an algorithm that reconstructs the complex transmission function of an
object from experimental x-ray diffraction data using 1.4 keV x rays. Conventional coherent diffractive
imaging, which assumes full spatial coherence, is a limiting case of our approach. Even in cases in which
the deviation from full spatial coherence is small, we demonstrate a significant improvement in the quality
of wave field reconstructions. Our formulation is applicable to x-ray and electron diffraction imaging
techniques provided that the spatial coherence properties of the illumination are known or can be

measured.
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Coherent diffractive imaging (CDI) is a method by
which the transmission function of a nonperiodic object
is recovered from its x-ray diffraction pattern [1]. The finite
extent of the scattering object establishes the uniqueness of
the mapping between the wave field that exits the object
and its far-zone diffraction pattern [2]. This relationship is
determined iteratively, imposing whatever a priori infor-
mation is available on the form of the complex wave field
that is propagated between object and detector planes.
Interest in the method has been stimulated recently by
the possibility of imaging single molecules using an
x-ray free-electron laser [3] and by the promising results
that have been achieved using free-electron lasers in the
extreme ultraviolet region [4]. While imaging of single
molecules is an important goal, CDI already offers consid-
erable promise for high-resolution imaging of three-
dimensional [5] and extended [6] objects using third-
generation  synchrotron sources. A number of
synchrotron-based applications of these methods have
emerged in the biological [7] and materials sciences [8].

In most CDI work to date it has been assumed that the
illuminating beam is completely coherent, an assumption
that is not generally appropriate for the x-ray wave field
generated by a third-generation undulator source [9,10], or
even a free-electron laser source [11]. Theoretical [12] and
experimental [13] work has demonstrated that CDI de-
pends critically for its success on near-perfect spatial co-
herence in the illuminating beam. Phase curvature in the
incident field can relax this requirement [12] but a small
degree of partial spatial coherence may still result in a
failure to retrieve the phases of x-ray data. Experiments
performed with optical lasers produce data that are re-
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ported to converge consistently [14]. In this Letter we
develop a method that lifts the restriction to fully coherent
illumination in CDI, and demonstrate the effectiveness of
the approach by recovering images from partially coherent
diffraction data obtained with an undulator source. Our
method will open the way to coherent imaging using less
coherent sources. Examples of further applications include
electron diffraction [15] for atomic resolution of nano-
clusters, nanotubes, and potentially, single biomolecules,
time-resolved x-ray imaging, as additional flux from exist-
ing sources will become usable, the x-ray imaging of hard
condensed matter and industrial samples through the use of
higher energies for which coherence is generally poorer,
and more reliable imaging from sources that produce high,
but imperfect, coherence [11].

A formal framework describing diffractive imaging us-
ing partially coherent illumination has been presented else-
where [12]. It was shown that a thin object with complex
transmission function, 7'(r), where r denotes position in a
plane transverse to the optical axis, illuminated with a
partially coherent quasi-monochromatic field defined by
a mutual optical intensity (MOI) J(r, r,) produces a far-
zone intensity distribution described by

1) = [ Iy, 1) T(r)T* () expl—ik - (v, — r5)]drydr,
(1)

where k is the transverse component of the scattered
k vector.

The coherent-mode model proposed by Wolf [16] ex-
ploits the positive-definite nature of J(r, r,) to write it in
the form
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in which the real, non-negative numbers, u,, describe the
occupancies of the modes, i ,(r), which are orthonormal
and mutually incoherent. In this formulation, the intensity
of the diffraction pattern is described by

N
1(k) = Y pul,(k), 3)
n=1

where I,,(k) is the intensity of the coherent diffraction pat-
tern produced by propagating the two-dimensional func-
tion T(r) ¢, (r) to the far zone. This transforms Eq. (1) into
a rapidly convergent sum of products of two-dimensional
Fourier transformations. The case where N =1 corre-
sponds to full spatial coherence and so the conventional
formulation of CDI emerges as a limiting case of this more
general theory. This approach is readily extended to imag-
ing techniques that employ electron scattering [15] by
replacing J(ry, r,) with the first-order electronic density
matrix, p(r, r,) [17], and the optical modes by the corre-
sponding natural orbital basis [18].

Here, building on work in the frequency domain [19], we
show that high quality images can be obtained with par-
tially coherent light by propagating with a field containing
a small number of spatial modes. The essence of our
multimodal algorithm is as follows: A field with a mutual
optical intensity function described by Eq. (2) is used to
form an estimate of the partially coherent field leaving the
sample. The field is then propagated to the detector plane
using Eq. (3) where the measured intensity is imposed on
the field, rescaling the amplitudes of the modes and leaving
their phases intact. The highest occupancy mode is then
propagated from the detector plane to the sample plane
where, because the assumption that the source is quasi-
monochromatic ensures that 7(r) operates equally on each
mode in Eq. (3), the sample plane support constraint is
applied. We note that any mode could be used for this back-
propagation step and we here choose the highest occu-
pancy mode as it contains by far the most energy and so
is the most accurately measured.

Each cycle of the algorithm here involves 50 iterations
of the error reduction [20] algorithm followed by 50 iter-
ations of the hybrid input-output [21] algorithm. A further
100 iterations of the error reduction algorithm are per-
formed after which the object support is refined using the
shrink-wrap algorithm [22]. This cycle is repeated until
convergence is achieved; six repetitions is typical. The
algorithm was tested on simulated data for a range of
incident coherence conditions and it was found that the
transverse coherence length in the Gaussian-distributed
illuminating radiation had a permissible uncertainty of
around =£10% for values smaller than the object, with a
significantly greater uncertainty permissible for longer
coherence lengths. Good convergence was achieved in

cases in which the coherence length was not less than
half the largest transverse dimension of the object.

The complete coherence function has been recovered for
the radiation from an undulator source [23]. It was found
that the MOI at the experiment is accurately described by
the statistically stationary Gaussian form,

lxi — x> | ly1 — »l?
Soyr) = tyess| (ML ] @)
X y

where Eq. (4) supplies the definition of the horizontal and
vertical coherence lengths, €, and €, respectively, used
here. The modal structure of J(ry,r,) was determined
using a procedure published elsewhere [24]. It was found
that, for the 2-ID-B beam line at the Advanced Photon
Source [25] used in the experiments reported here, only
three coherent modes contribute significantly to the expan-
sion of J(ry, r,). The Gaussian form of the source distri-
bution in synchrotron sources will result in an MOI of the
functional form given in Eq. (4). However, it is to be
expected that the presence of optical components in the
beam line may influence the precise form to some degree.

The diffraction experiment was conducted using 1.4 keV
x rays at beam line 2-ID-B [25]. The coherence length of
the incident radiation was varied for this experiment via the
monochromator exit slit setting, which defines the effective
source size [9]. A set of Young’s pinholes were placed 8 m
from the exit slit of the monochromator and the fringes
were recorded for 1.4 keV x rays using a Princeton
Instruments PIXIS CCD detector, which had 2,048 X
2,048 pixels, each 13.5 um square and located 4.4 m
from the pinholes. Two horizontal exit slit settings for
the monochromator were chosen (5 um and 525 pm),
which span the range from high coherence (5 pwm setting)
to low coherence (525 pm setting) in the illumination [9]
in the horizontal direction. The interference pattern for the
lower coherence setting is shown in Fig. 1(a). Here, the two
0.87 wm pinholes are separated by 12.7 um. The precise
dimensions of the Young’s pinhole set were determined
post-facto by a fitting procedure [9]. The data were fitted
using an expression of the form in Eq. (4) to determine the
coherence lengths which, in the horizontal direction, was
determined to be (9.7 = 0.5) wm. The coherence length in
the vertical direction for this system is known to be so large
(>1 mm) that full spatial coherence was assumed, mod-
eled by a single spatial mode. The 5 wm exit slit setting
resulted in fringes consistent with full coherence.

The CDI experiment used the sample shown in Fig. 1(b).
The sample consists of a set of apertures milled by a
focused ion beam into a gold substrate of nominal 3 um
thickness which therefore has negligible transmission for
the 1.4 keV x rays used here. The sample was placed 11 m
from the exit slit of the monochromator and 1.4 m before
the CCD detector described above. The detector was
aligned so that the diffraction pattern was centered on the
detector. Each data frame was corrected for background
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FIG. 1 (color online). (a) Young’s interference fringes used to
measure the coherence length of the x rays at the plane of
sample. The data are analyzed using a Gaussian statistically
stationary model for the coherence function. The exit slit of the
monochromator had a nominal width of 525 wm for these data.
(b) Scanning electron micrograph of the sample used in the CDI
experiments. The sample is drilled in gold using a focused ion
beam. The sample dimensions are shown. (c) Diffraction data
from the sample in (a) obtained using 1.4 keV x rays. This data
was obtained using the highest coherence available. The color
bar along the bottom of the image indicated the relative intensity
of the measured data, with the highest intensity normalized to
unity and corresponds to a scattering vector at the detector
corners with magnitude 9.8 nm~!. (d) Detail from the data.
The panel shows the region of the data contained in the white
box seen in (b) for highly coherent data to the left of the red line
and low coherence data to the right.

signal and thresholded before 600 consecutively recorded
data frames were summed. An example of the diffraction
pattern for the highest coherence condition is shown in
Fig. 1(c). Detailed images of a section of the diffrac-
tion pattern are shown for both high and low coherence
in Fig. 1(d). As expected, the visibility of the speckle is
reduced in the lower coherence data.

As the sample was further from the exit slit than were the
pinholes in the Young’s experiment, the coherence length
at the sample was assumed to scale linearly on propagation
from the double-pinhole plane to the sample plane. We use
a factor 11/8 to rescale €, corresponding to the ratio of the
two distances from the exit slit. Data were reconstructed
assuming both full coherence and by using the measured
coherence properties and the algorithm described here. The
reconstructed sample-plane wave magnitude for the low
coherence data obtained using the multimode algorithm

above is shown in Fig. 2(a). The reconstruction is remark-
ably accurate; reconstructions from different random start-
ing guesses did not produce significant differences in the
converged solution. By comparison, the assumption of full
spatial coherence and the use of a single mode fails to find
a satisfactory solution for the phase of the partially coher-
ent diffraction pattern, as seen in Fig. 2(b).

Further data were obtained under conditions approach-
ing full spatial coherence of the illumination. An estimate
of the coherent modes was also performed for this data on
the assumption that the horizontal coherence length was
40 pwm; we expect that the practical impact of an inaccu-
rate coherence length will be small provided the estimate
and the correct value are both much larger than the dif-
fracting object. This resulted in a transmission function,
displayed in Fig. 2(c). The fully coherent (single-mode)
implementation of the algorithm was able to recover the
transmission function of the object, Fig. 2(d), though
the reconstruction displays artifacts inconsistent with the
known uniformity of the illumination. The reconstruction
using multimodal propagation is significantly more uni-
form in intensity over the apertures than is the single-mode
result, indicating that the effects of partial spatial coher-
ence can profitably be included in the analysis of synchro-
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FIG. 2. (a) Reconstruction of the magnitude of the wave leav-
ing the sample using the known coherence information (labeled
“multimodal” propagation). (b) A reconstruction of the same
data in identical conditions except that full spatial coherence is
assumed (labeled “coherent” propagation). We were not able to
obtain a reconstruction from this data under this assumption.
(c) Reconstruction of the high-spatial coherence (5 wm exit slit
setting) data using the algorithm that allows for a deviation from
perfect coherence. (d) Reconstruction using an algorithm that
assumes perfect spatial coherence.
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tron data even when they are obtained with a spatial
coherence several times larger than the linear dimension
of the object.

The spatial resolution was deduced by examining the
aperture boundaries in the transmission function recovered
from the low coherence data. An error function was fitted
across an aperture edge at a number of points from which
we obtained a spatial resolution of (65 * 10) nm. This is
consistent with the resolution of 55 nm predicted by Abbé
theory using the maximum diffraction angle at which
x rays have been measured. The similarity of Figs. 2(a)
and 2(c) demonstrates that the use of partially coherent
illumination in diffractive imaging does not significantly
degrade the spatial resolution available.

In conclusion, we have shown that partial spatial coher-
ence can be incorporated into the reconstruction of CDI
images and that the method enables reconstructions in
cases precluded by conventional approaches. The inclusion
of partial coherence reduces the artifacts in reconstructions
obtained using highly coherent illumination and promises
to substantially improve imaging consistency, reliability
and quality for all applications of CDI. We anticipate that it
can also be extended to higher energy and lower brilliance
x-ray sources to compensate for their shorter coherence
lengths. An appropriate recasting of the method will fur-
ther allow its extension to partially coherent electron
sources.
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