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Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are

not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such

nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout

reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based

on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions,

in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the

recently established relation between reduction of spectroscopic strength, observed in knockout reactions

on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for

the physical meaning of spectroscopic factors is discussed.

DOI: 10.1103/PhysRevLett.103.242501 PACS numbers: 21.10.Jx, 27.20.+n

The concept of magic numbers of neutrons and protons
making up a nucleus is fundamental to our understanding
of a wide range of phenomena from the properties and
binding energies of nuclei themselves to the relative abun-
dance of elements in the universe [1]. The observed magic
numbers are usually explained by a model (the shell
model) in which independent nucleons fill single-particle
energy levels in a mean field according to the Pauli exclu-
sion principle. Such a picture is similar to electronic struc-
ture of atoms responsible for organising the chemical
elements into the Periodic Table. It has been found, how-
ever, that the cross sections of the (e, e0p) reactions on the
closed shell nuclei 16O, 40;48Ca, 208Pb are 50%–60%
smaller than those expected from the independent particle
model [2]. Direct reaction theories of the (e, e0p) reaction
predict that its cross section depends on the spectroscopic
factor (SF) which is a measure of the occupancy of single
proton levels in the target nucleus. The observed reduction
of SFs appears to contradict the traditional view of 16O,
40;48Ca, 208Pb as doubly magic nuclei.

Away from the closed shells, nuclei such as 7Li, 12C,
30Si, 31P, 51V, and 90Zr also reveal a similar reduction of
SFs as compared to prediction of the 0@! shell model [3].
The SF reduction is also found for other nuclei in a recent
analysis of the (d, p) and (p, d) reactions [4], in which the
bound state wave functions of the transferred neutron are
fixed by modern Hartree-Fock calculations and have
shapes similar to those derived from (e, e0p).

Recently, SF studies with radioactive beams have re-
vealed a new phenomenon. It turned out that reduction of
experimental SFs Sexp, determined as ratios of the mea-

sured to theoretical cross sections, from the theoretical
values Sth, obtained in the shell model, depends on the
separation energy of the removed nucleon and on the
nucleon type. It has been also discovered that the SF
reduction factor Rs ¼ Sexp=Sth is concentrated around a

straight line when plotted as a function of the difference

between proton (Sp) and neutron (Sn) separation energies,
�S, taken as Sp � Sn and Sn � Sp for proton and neutron

knockout, respectively [5].
It is known that Sth agrees better with Sexp if the model

space, in which Sth is calculated, is increased, or in other
words, if particle-hole excitations are allowed. Thus, a six-
shell treatment of 16O shows that the percentage of the 0@!
component in it is �48%–60% [6] and that the 16O SF
changes from the 0@! value of 2 to 1.65 when the model
space increases to 4@! [7]. However, it is still higher than
the (e, e0p) value of 1.27(13) [3] suggesting that more
major shells should be added to the model space, which
contradicts the view of 16O as a double magic nucleus. The
contributions from missing model spaces can be recovered
by using correlated wave functions in ab initio approaches.
Indeed, the 7Li proton SF calculated in the variational
Monte Carlo (VMC) method agrees very well with Sexp
from (e, e0p) [8]. However, for 8;9Li, 8B and 9C the SF
reduction obtained by VMC calculations is not sufficient
(see Table I). Also, the ab initio calculations are feasible
only for light nuclei while the SF reduction is observed for
nuclei as heavy as 208Pb.
In this Letter, I show that it is possible to reconcile the

double magic nature of 16O with the observed 60% reduc-
tion of its spectroscopic strength and at the same time to
explain the observed Rsð�SÞ dependence if an alternative
method to calculating SFs is used. This method allows
minimal shell model spaces to be used and accounts auto-
matically for excluded orbits. It can be applied to any
nucleus and can be introduced into existing shell model
codes including those used by the community of nuclear
experimentalists studying one-nucleon removal reactions.
Below, I present this method, emphasize its importance for
explaining the phenomenon of SF reduction and present
numerical results for A < 16 nuclei.
The theoretical SF for one-nucleon removal, Slj, is

defined in a model independent way as the norm of the
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radial overlap function IljðrÞ with orbital momentum l and

angular momentum j, calculated between the wave func-
tions �JB and �JA of two neighboring nuclei B ¼ A� 1

and A with the total spin JB and JA:

IDElj ðrÞ ¼ A1=2h½½Ylðr̂Þ � �1=2�j ��JB�JA j�JAi: (1)

All available shell model codes calculate Slj from IljðrÞ
obtained by direct evaluation (DE) of Eq. (1) using some
model wave functions in truncated model spaces. The input
to these shell model calculations includes matrix elements
of the effective nucleon-nucleon (NN) interaction fitted to
a range of nuclear spectra. They carry no information about
the radial shapes of IljðrÞ, crucial for calculating one-

nucleon removal cross sections. In most applications, these
shapes are found from the separation energy prescription,
not related to the shell model NN matrix elements.

An alternative method to calculate IljðrÞ is to solve the

inhomogeneous equation (IE)

h�BjT̂A� T̂B�EAþEBj�Ai¼ h�BjVB�VAj�Ai; (2)

originally introduced by Pinkston and Satchler [13]. Here

T̂i and Vi are the kinetic and potential energy operators
while Ei is the total energy of nucleus i. The right-hand
side of (2) is treated as known. Equation (2) generates IljðrÞ
which automatically have the correct asymptotic shape, a
feature crucial for transfer reactions but not so for binding
energy calculations. Earlier explorations of this method,
reviewed in [14], were based on separating the mean field
part out of Vi and keeping only the valence nucleon space.
They gave little information of utility of the method and

were abandoned before 1980s. Later, a different strategy,
applied in [15,16] to calculating the source term h�BjVB �
VAj�Ai, resulted in SFs different from traditional shell
model values. Neither the Pinkston-Satchler approach nor
that of Refs. [15,16] have been considered in the context of
the SF reduction phenomenon as both were used at the time
when the Rsð�SÞ dependence was not known. Here, I prove
the legitimacy of the method of Ref. [16] and show its
relevance to the SF reduction.
According to [16], the solution of Eq. (2) is

IIElj ðrÞ ¼ A1=2

���
Glðr; r0Þ

rr0
Ylðr̂0Þ � �1=2

�
j

��JB

�
JA

jjV̂ jj�JA

�
; (3)

where integration over r0 is implied and Glðr; r0Þ is the
Green function for a bound nucleon in the field of a point
charge ZB corresponding to the momentum i�,

Glðr; r0Þ ¼ � 2�

@
2�

e��iðlþ1þ�Þ=2Flði�r<ÞW��;lþ1=2ð2�r>Þ:
(4)

Here � ¼ ð2��=@2Þ1=2, � ¼ EB � EA, � is reduced mass,
� ¼ ZBZNe

2�=@2�, F is the regular Coulomb function

and W is the Whittaker function. Also, V̂ ¼ VA � VB �
ZBZNe

2=r and Vx ¼ P
x
i<j vij. In both Eqs. (1) and (3), r

(r0) is the distance between the center-of-mass of B and the
removed nucleon, and Yl is the spherical function. The
advantage of (3) is that it guarantees the correct asymptotic
form for IIElj ðrÞ when the experimental value of � is used,

whatever �JB and �JA are.

Equation (3) was obtained assuming that �JB and �JA

are exact solutions of the many-body Schrödinger equation

and that V̂ contains bare realistic NN interactions. In this
case, IDElj ðrÞ and IIElj ðrÞ, and the corresponding SFs SDElj and

SIElj , should be equal. However, usually �JB and �JA are

replaced by model wave functions in truncated spaces.
This raises the question about what should be used for

V̂ . To answer it, I consider an exact nuclear wave function
� constructed from an uncorrelated state �, defined in
some truncated model space, for example, using the uni-
tary correlation operator method [17]:

j�i ¼ Cj�i ¼ exp

�
�i

XA
i<j

gij

�
j�i: (5)

Here C is the unitary correlator designed to shift nucleons
away from each other whenever their uncorrelated posi-
tions are within the repulsive NN core.� is found from an
effective Hamiltonian that contain effective interactions

Veff consisting of V̂ ¼ CyVC and the terms arising from
the kinetic energy operator [17]. If wave functions from
Eq. (5) are used in Eq. (3), then

TABLE I. SIE ¼ SIEp1=2 þ SIEp3=2 calculated with M3YE and
RM3YE in comparison to SDE, experimental values Sexp
[3,4,8–11] and ab initio VMC SFs Sab [8,10–12].

A A� 1 SDE M3YE RM3YE Sexp Sab
3H d 1.5 1.21 1.33 1.30
3He d 1.5 1.22 1.35 1.32
4He 3He 2.0 1.29 1.42 1.50
7Li 6He 0.69 0.28 0.33 0.42(4) 0.42
7Li 6Li 0.87 0.44 0.46 0.74(11) 0.68
8Li 7He 1.02 0.38 0.44 0.36(7) 0.58
8Li 7Li 1.14 0.65 0.77 0.97
8B 7Be 1.14 0.78 0.91 0.89(7) 0.97
9Li 8Li 1.04 0.60 0.70 0.59(15) 1.14
9Be 8Li 1.13 0.45 0.49 0.73
9C 8B 1.04 0.71 0.82 0.77(6) 1.14

10Be 9Li 1.93 0.81 0.88 1.04
10Be 9Be 2.67 1.48 1.68 1.93
12B 11B 0.99 0.97 0.84 0.40(6)
12C 11B 2.85 1.55 1.76 1.72(11)
13C 12C 0.63 0.63 0.51 0.54(8)
14C 13C 1.87 1.82 1.49 1.07(22)
14N 13N 0.72 0.60 0.53 0.48(8)
15N 14N 1.48 1.31 1.06 0.93(15)
16O 15N 2.13 1.57 1.29 1.27(13)
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h�BjV̂ j�Ai ¼ h�BjCy
BðVA � VBÞCAj�Ai

¼ h�BjVNCNBj�Ai ¼ h�Bj ~Veffj�Ai; (6)

where CA ¼ CBCNB, CNB ¼ expf�i
P

B
i¼1 giNg and

VN ¼ P
B
i¼1 viA, assuming for simplicity that Coulomb

interaction is absent. Equation (6) tells us that the ef-

fective interaction ~Veff that approximates V̂ when model-
ing IIElj ðrÞ using uncorrelated model functions �B and �A,

differs from the effective interaction Veff that generates
them. Moreover, �B and �A depend only on matrix ele-
ments hc �1

ðr1Þc �2
ðr2Þjveffðr12Þjc �3

ðr1Þc �4
ðr2Þi in a

chosen truncated space, where c �ðrÞ is a single-
particle wave function in the state �. Hence, IIElj ðrÞ and
SIElj depend on them as well. But in addition, they also de-

pend on matrix elements of ~Veff , hGlðr; r1Þ=ðr1rÞc �2
ðr2Þj�

~veffðr12Þjc �3
ðr1Þc �4

ðr2Þi (if center-of-mass motion is ne-

glected), that carry information about coupling to missing
model spaces. This conclusion follows from the Green
function expansion onto complete set fc �ðrÞg, which in-
cludes states from both truncated and missing spaces.
Thus, these matrix elements are not constrained by binding
energy calculations and must be constrained by some other
means.

A quantity that can serve as a reference to callibrate ~Veff

is the asympotic normalization coefficient (ANC). It de-
termines the magnitude of the IljðrÞ tail [18], depends on
the same operator ~Veff and can be determined from periph-
eral transfer experiments. In [19], the vertex constants,
related to the ANCs by a trivial relation [18], were studied
for 0p-shell nuclei in the oscillator 0@! shell model. It was
found that reasonable agreement between measured and

calculated vertex constants can be achieved if a version of
the M3Y potential, constructed in [20] to fit the oscillator
matrix elements derived from the NN scattering phase
shifts, is used for ~Veff . Below, I use this interaction (labled
as M3YE) to calculate SIElj . I show that they are reduced

with respect to SDElj and, at the same time, are closer to

experimental SFs.
First of all, I test the method as applied to the well

understood A ¼ 2 system, for which IIElj ðrÞ is the deuteron
wave function and satisfies

rIIE0sðrÞ ¼
Z 1

0
dr0r0G0ðr; r0Þ ~Veffðr0Þ’0sðr0Þ; (7)

where ’0s is the 0s oscillator wave function. rIIE0sðrÞ,
calculated with M3YE for ~Veff and with oscillator radius
rosc ¼ 1:51 fm, is close to the realistic deuteron wave
function generated by the NN potential AV18 [21] [see
Fig. 1(a)]. Its norm, SIE ¼ 0:91, is close to the s-wave
probability of 0.94 established in the deuteron.
For closed shell nuclei, IIElj ðrÞ depends only on ~Veff and

does not depend on the effective interactions determining
their energies. Thus, the SFs for these nuclei, together with
their ANCs, can serve in the future as a reference for
callibrating the interaction ~Veff . Here, I calculate the over-
laps h3Hjdi, h4Hej3Hei and h16Oj15Ni, involving closed
shell nuclei, using M3YE. Only one Slater determinant
has been used for �A and �B, which are divided by the
0s center-of-mass motion wave function. The rosc is chosen
to be 1.53 for 3H and 3He, 1.33 fm for 4He and 1.8 fm for
15N and 16O to reproduce their rms radii. For A ¼ 3 and
A ¼ 4 IIElj ðrÞ are slightly smaller than the ab initio overlaps

from [22,23] [see Figs. 1(b)–1(d)] but for A ¼ 16 IIElj ðrÞ is
slightly larger than the overlap function derived from the
(e, e0p) knockout [3]. In both cases, SIE are reduced with
respect to SDE (see Table I).
For open shell nuclei, SIE also depend on occupancies of

the single-particle orbits in the chosen model space, or on
weights of the SUð3Þ and SUð4Þ configurations in the
supermultiplet shell model. I generate these weights using
phenomenological interaction from [24] which gives im-
proved spectra of 0p shell nuclei. I remove the center-of-
mass motion explicitly and use rosc chosen as an average of
values for nuclei A and B derived in [25] from electron
scattering. The resulting SFs SIE for ground states of the
0p-shell nuclei, obtained with M3YE, are compared in
Table I to SDE and to SFs available from knockout and
those transfer reactions that use Hartree-Fock wave func-
tions for transfer states. For all of them, SIE < SDE, which
clearly displays the SFs reduction phenomenon. However,
SIE > Sexp for 0p1=2 and SIE < Sexp for 0p3=2. Agreement

between SIE and Sexp can be improved by tuning the ~Veff

potential. In this letter, for demonstration purpose only, I
make the following changes to M3YE. All potentials in
even partial waves are multiplied by 1.05. This increases
the SFs for d, 3H, 3;4He by 10%. Then the central and spin-
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FIG. 1. The overlap functions rIIEðrÞ calculated for M3YE for
(a) hdjpi, (b) h3Hjdi, (c) h4Hej3Hei and (d) h16Oj15Ni in com-
parison to (a) the realistic deuteron wave function obtained with
AV18 potential in [21], (b, c) ab initio overlaps obtained with
AV18þ UR (or UIX) interaction in [22,23] and (d) the overlap
function derived from (e, e0p) reaction [3].
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orbital odd components are multiplied by 1.7 and 2.5,
respectively, which allows Sexp for both 12C and 16O to

be reproduced. Increasing odd tensor component twice
reproduces the SF for 13C. The SFs calculated with such
a renormalized potential, called here RM3YE, are shown in
Table I. Most SFs agree well with experimental data.
Detailed discussion of this comparison will be published
elsewhere.

The ratio RIE
DE ¼ SIE=SDE, obtained with RM3YE, is

shown in Fig. 2 as a function of �S. The decrease towards
large positive �S can partially be explained by the pres-
ence of �-dependent functionGlðr; r0Þ in Eq. (3). Computer
calculations show that, for fixed �A, �B and ~Veff , SIE

decreases with increasing �. Other effects must be also
responsible for RIE

DEð�SÞ behavior but no rigorous expla-
nation to it is yet available.

The ratio RIE
DEð�SÞ is remarkably similar to Rsð�SÞ from

[5]. This suggests that what really is measured in one-
nucleon removal experiments is not SDE but SIE, thus
implying that these experiments study not occupancies of
the shell model orbits but effective interactions VNCNB for
occupancies fixed from other observables, such as binding
energies or nuclear spectra. Because of the presence of the
Green function in Eq. (3), SIE carries much more informa-
tion about missing model spaces than SDE. Therefore, it
may be difficult to get correct values for SFs by over-
lapping wave functions directly even if they are obtained
in a correlated ab initio approach. Indeed, the VMC SFs for
light nuclei are systematically larger than SIE calculated in
a much simpler model with a reasonably chosen effective
interaction, and, except for 7Li, the VMC SFs are in a
worse agreement with experiment than those from the
present work (see Table I).

Thus, for 50 years SFs have been calculated in a proce-
dure of direct overlapping model wave functions that is
sensitive only to effective interactions in truncated model
space and does not contain important contributions from
excluded model spaces. Calculating SFs from IIElj ðrÞ gen-
erated by Eq. (3) is a more appropriate procedure that
allows small model spaces to be used to explain the large
reduction of spectroscopic strength due to coupling to

missing model spaces. Moreover, explicitly depending on
NN matrix elements both in truncated and excluded spaces
and having a guaranteed correct asymptotic form, IIElj ðrÞ
itself becomes an interface between nuclear structure and
nuclear reactions theories. Incorporating Eq. (3) into
widely used shell model codes and into other microscopic
approaches, including ab initio ones, would be highly
beneficial for modern nuclear physics and for astrophysical
applications, in particular.
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FIG. 2 (color online). The ratio SIE=SDE, calculated with
RM3YE.
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