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Future weak lensing surveys will map the evolution of matter perturbations and gravitational potentials,

yielding a new test of general relativity on cosmic scales. They will probe the relations between matter

overdensities, local curvature, and the Newtonian potential. These relations can be modified in alternative

gravity theories or by the effects of massive neutrinos or exotic dark energy fluids. We introduce two

functions of time and scale which account for any such modifications in the linear regime. We use a

principal component analysis to find the eigenmodes of these functions that cosmological data will

constrain. The number of constrained modes gives a model-independent forecast of how many parameters

describing deviations from general relativity could be constrained, along with wðzÞ. The modes’ scale and

time dependence tell us which theoretical models will be better tested.
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The observed acceleration of cosmic expansion poses a
puzzle for modern cosmology. It may be evidence for dark
energy (DE), a component with a negative equation of
state, w, making it gravitationally repulsive. It also war-
rants studying extensions of general relativity (GR) with
extra degrees of freedom that can mimic the effects of DE.
Modifications to GR are well constrained in dense regions
like our Solar System [1]. On larger scales GR is less well
tested. Several modifications to GR, capable of producing
cosmic acceleration, have been proposed [2]. With the
right parameter values, they can match the expansion
history of a universe made of cold dark matter (CDM)
and a cosmological constant �—the observationally fa-
vored�CDMmodel [3]. However, their predictions for the
growth of structure can differ since the perturbation equa-
tions get modified. Future tomographic weak lensing sur-
veys, like the Dark Energy Survey (DES) [4] and the Large
Synoptic Survey Telescope (LSST) [5], will measure lens-
ing shear and galaxy counts in many redshift slices (hence
the term tomography), thus mapping the evolution of per-
turbations and offering a new test of GR on cosmological
scales [2]. In this work, we use a two-dimensional principal
component analysis (PCA) to forecast the constraints on
modified growth (MG)—and thus our understanding of
gravity—coming from these surveys. Unlike previous
MG forecasts, ours is model independent and lets us de-
termine how many parameters describing MG could be
constrained, along with the regions in parameter space
where we expect the most sensitivity to MG.

We consider linear scalar perturbations to the flat
Friedmann-Robertson-Walker metric in Newtonian gauge

ds2 ¼ �a2ð�Þf½1þ 2�ð ~x; �Þ�d�2 � ½1� 2�ð ~x; �Þ�d~x2g;
where � is the conformal time and að�Þ the scale factor. In
Fourier space, one can write [6,7]

�=� ¼ �ðk; aÞ; k2� ¼ ��ðk; aÞ4�Ga2��; (1)

where � is the comoving matter density perturbation. The
function � describes anisotropic stresses, while � de-
scribes a time- and scale-dependent rescaling of
Newton’s constant G, as well as the effects of DE cluster-
ing or massive neutrinos. In �CDM, the anisotropic stress
due to radiation is negligible during matter domination,
thus � ¼ 1 ¼ �. In this Letter, we determine how well the
unknown functions � and � can both be constrained by
future data. We also address how well we can detect any
departure from � ¼ 1 ¼ � without distinguishing be-
tween them.
We consider all the two-point correlations between gal-

axy counts (GC), weak lensing shear (WL), and cosmic
microwave background (CMB) temperature anisotropy,
plus the CMB E-mode polarization and its correlation
with the CMB temperature. Detailed descriptions of our
assumptions for each measurement are found in [8]. GC
probe the distribution and growth of matter overdensities,
thus giving an estimate of the Newtonian potential�, up to
a bias factor. WL is sourced by the sum of the potentials
(�þ�). GC are also affected by ‘‘magnification bias’’
[9], where WL convergence magnifies some faint (thus
otherwise undetected) galaxies, adding mild dependence
on (�þ�) to the GC. CMB data probe the integrated
Sachs-Wolfe effect (ISW) which depends on dð�þ
�Þ=d�. Thus, measuring GC and WL over multiple red-
shift bins, along with CMB data, yields information about
the relation between � and � and their response to matter
density fluctuations. Furthermore, supernovae (SN)
redshift-luminosity measurements and CMB constrain
the expansion history. For our forecasts, we assume the
following probes: Planck [10] for CMB, DES and later
LSST for GC and WL, and Joint Dark Energy Mission
(JDEM) [11] for SN. To compare to current data, we use
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large-scale structure (LSS) data compiled in [12] and the
latest SN and CMB data from the ‘‘Constitution’’ SN
sample [13] and WMAP5 [3]. For current data, we omit
WL but include the GC-CMB cross correlations.

In full generality, we treat �ðk; aÞ and �ðk; aÞ as un-
known functions and perform a PCA [14,15] to determine
how many of their DOFs can be constrained. We use
redshift z � a�1 � 1 as a time variable and pixelize the
late-time and large-scale universe (z 2 ½0; 30�, k 2
½10�5; 0:2�h Mpc�1) into Mþ 1 z bins and N k bins,
with each of the ðMþ 1Þ � N pixels having independent
values of �ij and �ij. We consider wðzÞ as another un-

known function, allowing each of theMþ 1 z bins to have
an independent value wi. Since the surveys we consider
will not probe z > 3 in detail, we useM bins linear in z for
z 2 ½0; 3� and a single bin for z 2 ½3; 30�. We chooseM ¼
N ¼ 20 and have checked that this pixelization is fine
enough to ensure the convergence of the results. We use
logarithmic k bins on superhorizon scales and linear k bins
on subhorizon scales to optimize computational efficiency.
As in [8], we only consider information from scales well
described by linear perturbation theory, a fraction of the
total (k, z) volume probed by future surveys. Since the
evolution equations [8] contain time derivatives of �, �,
andw, we follow [16] and use hyperbolic tangent functions
to represent steps in these functions in the z direction,
while steps in the k direction are left as step functions.

Our parameters are the �ij, �ij, and wi, along with the

usual cosmology parameters: energy density of baryons
�bh

2 and CDM�ch
2, Hubble constant h, optical depth �,

spectral index ns, and amplitude As. We include one bias
parameter per GC z bin and the intrinsic SN magnitude.
Thus we have ðMþ 1Þð2N þ 1Þ þ 17 ¼ 878 parameters in
total. For a given set of parameter values, we use MGCAMB

[8,17] (a modification of CAMB [18] developed by us to
study modified growth) to compute angular spectra for our
observables. We generate numerical derivatives of observ-
ables with respect to parameters and use the specifications
for the experiments to compute the Fisher information
matrix, which defines the sensitivity of the experiments
to these parameters (see [8] for computational details). Our
fiducial values are in all cases �CDM: �ij ¼ �ij ¼
�wi ¼ 18i, j, and the fiducial values of the other parame-
ters are those of WMAP5 [3].

Let us first study the expected errors on �ðk; zÞ. The
error on any �ij is large, and the pixels have highly

correlated errors. PCA finds the linear combinations of
pixels with uncorrelated errors. We take only the �ij block

of the covariance matrix, thus marginalizing over all other
parameters, including the wi and �ij. We invert this block

to obtain the Fisher matrix for our � values, Fð�Þ, and
diagonalize Fð�Þ by writing Fð�Þ ¼ WT�W. The rows of

matrixW are the eigenvectors, or the principal components
(PCs) [14], while the diagonal elements of � are the
eigenvalues �m. Each eigenvector, e�ðk; zÞ, is a linear

combination of the original pixels �ij, forming a surface

in (k, z) space. The eigenvectors are orthogonal. We nor-
malize them to unity, rescaling the eigenvalues accord-
ingly. fe�ðk; zÞg forms an orthonormal basis in which we

can expand�:�ðk; zÞ � 1 ¼ P
m�memðk; zÞ, where�m are

the new uncorrelated parameters with variances given by
�m ¼ ½	2ð�mÞ��1. We expect, from existing data, that
variations in � larger than Oð1Þ are unlikely. We enforce
this by applying a prior �m > 1 to Fð�Þ. This procedure,

analogous to the treatment of wðzÞ in [19], does not affect
the well-measured modes but gives a reference point with
respect to which we define poorly constrained modes. The
worst-measured modes have variances approaching the
prior, while those with smaller variances are the well-
measured ones. Since we compute the full covariance
matrix, then marginalize over all but the parameter(s) of
interest, our procedure yields the results that we would get
for � if we simultaneously measured w, �, and �. This
analysis can be repeated for � or w. Given the PCA results,
one can convert uncertainties in the expansion parameters
�m into uncertainties in any other parametrization of� (�)
without recalculating the Fisher matrices [15,16] by pro-
jecting the PC Fisher matrix onto a new basis.
Measurements probe combinations of � and �, so the

effects of �, which affects only�, are mixed with those of
�, which affects both potentials. This yields degeneracy
between � and �. By varying both, then marginalizing
over one, we lose information common to both functions.
This is necessary when separately constraining � and �.
While this degeneracy impedes their ability to do so, DES

×

FIG. 1 (color online). Uncertainties in the eigenmodes for
current data and for future data sets including LSST (DES).
The two upper panels show modes of � and � with mutual
marginalization. The lower panel shows uncertainties in the
combined modes. The solid lines and the shaded region denote
the thresholds T1, T2, and T3. The filled symbols denote the
redshift-dependent modes. In the lower panel, the dashed lines
show the uncertainties for � with � fixed.
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and LSSTwill yield nontrivial constraints on� and � with
mutual marginalization (marginalizing over � when
measuring � and vice versa). The uncertainties associated
with PCs of � and � are shown in the top two panels of
Fig. 1 for LSST, DES, and current data. To quantify the
sensitivity of the surveys to MG, we introduce three thresh-
olds: well constrained [T1, 	ð�mÞ & 0:01], constrained
[T2, 0:01 & 	ð�mÞ & 0:1], and informative [T3, 0:1 &
	ð�mÞ & 0:5]. From Fig. 1, we see that DES could con-
strain two � parameters and no � parameters. LSST could
constrain many modes, as it will have a superior sky cover-
age and resolution, wider z span, and more precise photo-
metric redshift measurements. Current data effectively
cannot constrain either � or �. The constraints on � are
generally stronger than those on �: � affects GC, WL, and
CMB, while � primarily affects WL and CMB.

Figure 2 shows selected eigenmodes of � and � for
LSST and DES. The ith �½��mode represents the ith best-
constrained independent �ðk; zÞ½�ðk; zÞ� surface. Models
that predict� and � similar to our ‘‘best’’ modes, then, will
be better constrained. We observe no degeneracy in the k
and z dependences of the modes. This is counterintuitive,
since changing� at some point (k, z) should have the same
impact on the observables as a change at a larger scale but
later time. However, since we allow for simultaneous
variation of �, the change in � is more efficiently offset
by adjusting �, eliminating the k-z degeneracy. There is a
clear pattern to the modes; the best-constrained modes
have no z nodes, but apparent k nodes, and, approximately,
themth mode hasm k nodes. For LSST, at roughly the 10th
mode, the first z node appears, followed by another period
of scale-dependent patterns. The alternating (k, z) patterns
repeat until mixed (k, z) modes appear, after which there
are no clear patterns. The best modes are mainly functions
of k and not z. This is partly because the total observable
volume in the radial (z) direction is limited by the dimming
of distant objects and, ultimately, the fact that structures
only exist at relatively low z. Also, it is related to us
considering only linear perturbations in our analysis, since
at small z the observable volume is too small to fit the small
k modes that are still in the linear regime. Hence, there is

more volume available for studying the spatial distribution
of structure than the radial distribution. The number of
nodes in the z and k directions tell us, respectively, the
number of z- and k-dependent parameters that surveys
could constrain. For example, for LSST, there are three
clear z-dependent patterns of � and � whose eigenvalues
fall within T2 and T3 ranges. For DES, the only constrained
modes are those of �, and they exhibit only one type of z
dependence, with one node.
The LSSTmodes for� and � have similar shapes except

that the � modes have a deeper z span than the � modes.
This is due to an accumulation effect on �. On subhorizon

scales, the density contrast evolves via €�þH _� ¼
4�G��a2�. Perturbing � at one pixel, e.g., enhancing it
at some k and z ¼ 3, enhances � (and thus �) for that k
mode 8z < 3. On the other hand, changes in � at high z,
which primarily affect WL through changes in� [Eq. (1)],
do not affect WL at low z. Hence, the z-sensitivity range of
� is primarily determined by the redshift range of the WL
kernel. The z dependence of � also affects the ISW con-
tribution to the CMB at small k and low z, but its contri-
bution to the Fisher matrix is small due to a large cosmic
variance.
In most models of modified gravity,� and/or � evolve in

a time- and scale-dependent way [2]. For example, in
scalar-tensor theories, they undergo a steplike transition
at the Compton scale of the scalar field. The peaks in the
eigensurfaces indicate the ‘‘sweet spots’’ in the (k, z) space
where such a transition scale can be detected by the survey,
while the frequencies of the modes tell us how well a
transition can be resolved. For LSST, the best-measured
modes peak in the region 0:04< k< 0:16h�1 Mpc and
0:5< z < 2, indicating a sensitivity to a Compton scale
today of 50 & �0

c & 1500 Mpc, where we have allowed for
a range of possible time evolutions of the mass scale [8].
Massive neutrinos also introduce a transition in � due to
freestreaming. From the expression for the freestreaming
length in terms of z and the neutrino mass m
 (see, e.g.,
[20]), we find that the transition scale is within the LSST
sensitivity window for 0:1 & m
 & 0:7 eV. Smaller
masses induce an overall suppression of growth with no
scale-dependent signatures. While observable to some ex-
tent, this suppression is largely degenerate with wðzÞ,
especially if one allows for an arbitrary evolution of
wðzÞ, as we have done.
In addition to constraining � or � individually, a less

ambitious yet equally interesting question is how sensitive
data are to any departure from standard growth. Namely,
one may ask if either function deviates from unity without
specifying which. For this purpose, we want to save the
information common to both functions, which we previ-
ously lost by mutual marginalization. Hence, we consider
the combined principal components of� and �. We follow
the same procedure as before, except now we diagonalize
the block of the Fisher matrix containing � and � pixels.
The eigenvalues of these combined PCs are shown in the

FIG. 2 (color online). Eigensurfaces for � and �, with mutual
marginalization, for LSST (DES) along with Planck and JDEM.
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lower panel of Fig. 1. Even today’s data can provide around
15 ‘‘constrained’’ modes. This is unsurprising since the
LSS power spectrum, PðkÞ, is known to better than 10%
precision over an order of magnitude in k. Changing � at
any k directly affects PðkÞ, which means that large varia-
tions in � are disallowed in the range where PðkÞ is well
measured. After marginalizing over �, the direct impact on
PðkÞ is lost, since one can now offset changes in � by
adjusting �. The dashed lines in Fig. 1 represent the
eigenvalues of � without marginalizing over �. They are
comparable to the eigenvalues of combined PCs, support-
ing the above notion. From Fig. 1, we see that DES will
provide around 20, while LSST will provide up to 100,
‘‘well-constrained’’ combined modes.

So far, our analysis has neglected systematic errors,
which are model dependent and hard to predict. While
we address systematics thoroughly in an upcoming publi-
cation, we report here the outcome of a preliminary analy-
sis based on the assumptions in [21,22]. We repeat our
PCA with extra parameters describing likely sources of
systematic error: shifts in the centroids of the z bins,
distortions of the z-bin distribution functions, and additive
and multiplicative errors on the WL signal due to point-
spread-function contributions, as in [21]. This adds 58 (80)
parameters to our analysis for DES (LSST). We assume no
‘‘catastrophic’’ photo-z misestimation and apply a conser-
vative set of priors [22] to these parameters and margin-
alize over them. The systematics result in a noticeable but
not dramatic dilution of constraints on MG from DES;
photo-z errors mostly affect the z dependence of MG, to
which DES was only weakly sensitive. As discussed above,
constraints from DES will be primarily on the scale de-
pendence of � and �, and that information is mostly
preserved. The impact of the systematics on LSST fore-
casts is more significant because LSST has more potential
to resolve z-dependent features. There, too, we find that
inclusion of systematics preserves most of the scale-
dependent information but reduces our ability to measure
eigenmodes of � with z-dependent features, underscoring
the need to study and control systematic errors in lensing
surveys. Even after accounting for systematics, LSST and
DES are powerful probes of MG.

The Dark Energy Task Force [23] recently analyzed
constraints on DE from future surveys, without considering
MG, and found that wðz ¼ 0Þ and ðdw=dzÞjz¼0 could both
be constrained. A time-varying wðzÞ alters the growth
dynamics in a scale-independent way, so the scale depen-
dence of � and � cannot be duplicated by a choice of w.
Furthermore, since we consider linear scales, the dominant
portion of the information on MG comes from higher z
(z > 0:5), at which DE effects are not as important. Thus,
in addition to measuring wðzÞ, future surveys will tightly
constrain scale-dependent departures from �CDM and
those occurring at high redshifts. Note that including the
nonlinear growth data from lower z requires a model-
dependent treatment of MG, in which case wðzÞ and MG
would be related by the same theory.

To recap, we have forecasted the constraints on modifi-
cations to GR from future data sets, in comparison with
existing data. We find that data from Planck, JDEM, and
LSST (DES) can tightly constrain around 100 (20) parame-
ters of MG [corresponding to the 100 (20) eigenvalues in
region T1 in the combined � and � analysis] if the system-
atics are negligible. Current data constrain only one pa-
rameter to this level. We have identified the regions in
parameter space to which future data are most sensitive.
Our technique can be used in survey design to move the
sweet spots to the most interesting parts of parameter
space. Our results use only linear-scale data, being a con-
servative ‘‘proof of concept’’ that upcoming surveys can
rigorously test GR over cosmic distances.
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