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Optimal control theory is a promising candidate for a drastic improvement of the performance of

quantum information tasks. We explore its ultimate limit in paradigmatic cases, and demonstrate that it

coincides with the maximum speed limit allowed by quantum evolution.
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Engineering a suitable Hamiltonian that evolves a given
quantum system into a selected target state has acquired
special relevance after the recent advent of quantum infor-
mation science [1]. Here, the challenge is to perform
quantum tasks (e.g., apply a quantum gate) in an accurate
way while fulfilling the stringent requirements of fault
tolerance. In this context quantum optimal control (OC)
is considered a very promising tool, and different algo-
rithms have been designed with this aim [2,3]. One of them
exploits the Krotov algorithm [2], a numerical recursive
method which seeks the OC pulses necessary to implement
the required transformation by solving a Lagrange multi-
plier problem [4]. This technique has already been applied
with success to a wide range of quantum systems [4,5].
One issue that is not yet fully understood, however, is what
its limits are, and how these limits may be approached. In
this work we will show that the effectiveness of the Krotov
algorithm for quantum OC is related to fundamental
bounds that affect the maximum speed at which a quantum
system can evolve in its Hilbert space. Besides being of
interest from a theoretical perspective, the discovery of
such a constraint is also important for practical
implementations.

For time-dependent Hamiltonians, bounds that relate the
transition probabilities of a quantum system to its mean
energy spread were set by Pfeifer [6] and Bhattacharyya
[7], more than fifteen years ago. For time-independent
Hamiltonians, these results have been extended to include
dynamical constraints that involve also the energy expec-
tation value of the evolving system [8]. Moreover, in a
specific case Khaneja et al. evaluated the minimum time
required to implement a given quantum transformation [3].
In light of these results, our aim is to explore the very limit
of OC. In particular, we are interested to see whether the
Krotov algorithm [2] allows one to attain the ultimate
bound set by quantum mechanics [for which we borrow
from [8] the term quantum speed limit (QSL)].

Several attempts to reconcile accuracy and speed in
quantum control have been proposed so far (see [9,10]

and references therein). In particular, Carlini et al. [9]
cast the time-OC problem into the commonly termed
quantum brachistochrone problem: exploiting the varia-
tional principle they produce a collection of coupled non-
linear equations whose solution (when it exists) yields the
required optimal time-dependent Hamiltonian that mini-
mizes the time evolution while satisfying certain con-
straints on the available resources. Our approach differs
from that of Ref. [9] since we do not treat the duration of
the process as a variable that enters in the optimization
process. Instead, we set it to some fixed value T and use
standard quantum control optimization techniques to find
the T-long pulses which guarantee higher accuracy. The
connection between OC and the QSL emerges at the time
duration T < TQSL for which OC fails to converge.

Specifically, given an input state jc ð0Þi and a
Hamiltonian HðtÞ that depends on the set of time-
dependent control functions xðtÞ ¼
fx1ðtÞ; x2ðtÞ; . . . ; xkðtÞg, we shall employ the Krotov algo-
rithm [2] to determine the optimal xoptðtÞ that minimizes

the infidelity I ¼ 1� jhc ðTÞjc Gij2, which measures the
distance between the target state jc Gi and the time-T
evolved state jc ðTÞi under HðtÞ. The xoptðtÞ are con-

structed iteratively, starting from some initial guess func-
tions xgsðtÞ. We then analyze the performance of the

process as a function of T and show that the method is
able to produce infidelities arbitrarily close to zero only
above a certain threshold TQSL, which we compare with the

dynamical bounds that affect the system. We found good
agreement between these (in principle) independent quan-
tities, meaning that the effectiveness of our control pulses
is only limited by the dynamical bounds of the system.
Considering the limited set of controls we allow in the
problem, and the fact that our initial equations are not
meant to optimize T, this is a rather remarkable fact that
suggests that OC is a possible candidate for an operational
characterization of the QSLs of complex systems.
Even though our findings have been obtained in several

different contexts, including for instance ordered Ising and

PRL 103, 240501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 DECEMBER 2009

0031-9007=09=103(24)=240501(4) 240501-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.240501


Lipkin-Meshkov-Glick models, for the sake of clarity and
for demonstration of the generality of the argument, in this
Letter we shall focus on two paradigmatic examples: the
Landau-Zener (LZ) model [11], and the transfer of infor-
mation along a chain of coupled spins with Heisenberg
interactions. The former case constitutes a basic step for
the control of complex many-body systems, whose evolu-
tion, for finite size systems, is in many cases a cascade of
LZ transitions [12]. Adiabatic quantum computation [13]
is known to be limited by avoided crossings in the time-
dependent system Hamiltonian and by our inability to
avoid excitation of the system. The spin-chain case is
instead related to one of the central requirements for the
construction of circuit-model quantum computers: an in-
frastructure that can rapidly and accurately transport qubit
states between sites [14].

Landau-Zener model.—The first example we consider is
the paradigmatic case of the passage through an avoided
level crossing

H½�ðtÞ� ¼ �ðtÞ !
! ��ðtÞ

� �
; (1)

in which �ðtÞ is the control function that we shall optimize
through the Krotov algorithm. We start the evolution by
preparing the system in the instantaneous ground state of
H½�ð0Þ� and we assume as our target the ground state of
H½�ðTÞ�, with �ðTÞ ¼ ��ð0Þ (limj�ð0Þj!1hc ð0Þjc Gi ¼ 0).
As an initial guess �gsðtÞ for the control we follow

Ref. [15]. Here on the basis of the adiabatic theorem [16]
the control pulse �ðtÞ was selected through a differential

equation _� ¼ �G2ð�Þ, where Gð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ �2

p
is the

instantaneous energy gap of the Hamiltonian (1), while
� ¼ ½arctanð�ðTÞ=!Þ� arctanð�ð0Þ=!Þ�=4T!. Starting
from the �gsðtÞ defined above, we run the OC algorithm

for various values of the total time T. The results are
reported in Fig. 1 by plotting the infidelity I as a function
of the iterations n of the algorithm. When T < TQSL �

1:5688, the infidelity I does not converge to zero, being its
curvature asymptotically flat. On the contrary, by progres-
sively increasing T towards and above TQSL, the curvature

changes sign and the infidelity in the large iteration limit
decreases exponentially, as confirmed by the fit in Fig. 1. In
the inset of Fig. 1, data for the second derivative of the
infidelity logarithm with respect to the logarithm of n for
different T are shown: the derivative starts to cross the zero
line for T � 1:58, and for T > TQSL it clearly becomes

negative. These findings are reflected by the study of the
pulse shape of the optimization process (data not shown).
For T < TQSL, the pulse develops a peak which grows

indefinitely by increasing n and the control seems unable
to converge towards an optimal shape. On the contrary,
when T > TQSL, after a certain number of iterations, the

shape becomes stable, and only small corrections of the
order of the infidelity take place. Remarkably, the peculiar
feature of the initial guess �gsðtÞ of being almost constantly

zero for most of the central part of the evolution is pre-
served by the recursive optimization of OC [2], suggesting
that for this simple model an estimation of a finite resource
QSL bound TQSL for T can be deduced by a time-

independent formula, assuming H0 ¼ H½� ¼ 0� as the
Hamiltonian. In other words, for most of the evolution
time the dynamics can be effectively described by a
time-independent Hamiltonian, which we can use to ana-
lytically estimate the QSL. This can be quantified with the
Bhattacharyya bound [7], yielding

TQSL ’ �E�1
0 arccosjhc ð0Þjc Gij; (2)

where �E0 is the energy variance of H0 calculated on the

initial state jc ð0Þi, i.e. �E0 ¼ ½!2 � 4!4=G2ð�ð0ÞÞ�1=2.
This approach has the advantage of providing a bound for
T that is independent of the effective shape of the selected
pulse. Finally, in Fig. 2 we show a comparison between the
estimate TQSL through the second derivative of the infidel-

ity and the theoretical time-independent estimate (2) for
various �ð0Þ=! ratios. We stress that here we have no
fitting parameters. The excellent agreement shows that
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FIG. 1 (color online). Infidelity I versus number of iterations
n of the Krotov algorithm [2] for different values of T (in units of
@=!) for �ðTÞ=! ¼ 500. The dashed line is the estimated QSL
(TQSL ¼ 1:5688) while the dot-dashed line is an exponential fit.

Inset: Second derivative of the infidelity logarithm with respect
to the logarithm of n.
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FIG. 2 (color online). Comparison between the time-
independent estimate (dashed line) and the second derivative
criterion (circles, for��ð0Þ=! ¼ 5, 10, 20, 100, 500, 5000 from
right to left) for TQSL for the LZ model.
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the OC efficiency is ultimately set by the dynamical bound
of Eq. (2).

Quantum state transfer.—We now apply our analysis to a
scheme for information transfer in a spin chain [14]. In this
context a notion of QSL for spin chains was introduced in
Ref. [17] where the velocity of the information propagation
was optimized with respect to the constant interactions
among spins in the chain. This is of course quite different
from the approach we introduce here where the couplings
are given and the information transfer is sped up by using
properly tailored external pulses. The model consists of a
one-dimensional Heisenberg spin chain of length N de-

scribed by the HamiltonianHðtÞ ¼ � J
2

P
N�2
n¼0 ~�n � ~�nþ1 þP

N�1
n¼0

CðtÞ
2 ½n� dðtÞ�2�z

n, where ~� ¼ ð�x; �y; �zÞ are the

Pauli spin matrices, J is the coupling strength between
nearest-neighbor spins, CðtÞ is the relative strength of an
external parabolic magnetic potential, and dðtÞ represents
the position of the external potential minimum at time t (in
units of @=J) along the axis of propagation [18]. Because of
the conservation of the z component of the magnetization,
we can restrict our analysis to the sector with a single spin-
up only, so that a general state is described by jc ðtÞi ¼P

N�1
m¼0 �mjmi, where jmi represents the state where themth

site has its spin pointing up, and all other sites have spins
pointing down. The states fjmigN�1

m¼0 form a complete or-

thonormal basis for our Hilbert subspace. Our goal is to
evolve the initial state jc ð0Þi ¼ j0i to the final state
jc Gi ¼ jN � 1i, i.e., to transport a spin-up state from the
first site to the final site of the chain. In Ref. [18] this was
achieved by invoking the adiabatic approximation, which
relies on the fact that slowly moving the parabolic mag-
netic potential along the chain allows the spin-up to mi-
grate from the leftmost site to adjacent sites via a nearest-
neighbor swapping, while interactions between sites far
from the field minimum are frozen. Specifically, the trans-
fer was obtained by assuming pulses of the form CðtÞ ¼ C0

and dðtÞ ¼ tðN � 1Þ=T, and by working in a regime of
large (ideally infinite) transmission time T. In our ap-
proach, we shall use instead the Krotov method to find
the OC functions CðtÞ and dðtÞ using pulses similar to those
of Ref. [18] as an initial guess: this allows us to shorten the
transfer time beyond what is allowed by the adiabatic
regime. Once again, we optimize the controls for different
values of T in an effort to identify the minimum transfer
time allowed by the selected controlling Hamiltonian. For
each selected T the optimization algorithm stops either
after a certain number n of iterations (of the order of
105) or when the infidelity I reaches a certain fixed target
threshold I�. The results obtained are shown in Fig. 3 and
resemble those we have seen in the LZmodel. In particular,
as shown in Fig. 3 (left) the infidelity appears to converge
to zero only for values of T that are above a certain critical
time TQSL. On the contrary, for T < TQSL the convergence

of the infidelity slows down, providing numerical evidence
of a nonzero asymptote for n ! 1. In contrast with the LZ

case, however, the dependence of I with the iteration
number n is now less regular, reflecting the fact that the
spin-chain dynamics is more complex than for the LZ
model. Consequently, for the present model the sign of
the second derivative cannot be used as a reliable signature
of TQSL. Nonetheless, a numerical estimate T�

QSL for such

quantity can been obtained by considering the smallest
time T which allows us to achieve the target infidelity
threshold I� in a fixed number of algorithm iterations n
(the result does not depend significantly on the value of I�
and n). Apart from the case of small N, where boundary
effects are more pronounced, the resulting T�

QSL appears

to have a linear dependence on the chain length N—see
Fig. 3 (right).
For a comparison with an independent theoretical esti-

mate of TQSL, we cannot directly use the Bhattacharyya

bound (2), since in this case we are not allowed to treat the
Hamiltonian as approximately time independent.
Nevertheless, a bound on the minimal transferring time
can be obtained by considering the mean energy spread,
obtained by averaging the instantaneous energy spread of
the system of the time-dependent Hamiltonian HðtÞ over
the time evolution [0, T]. We define this by �E� ¼
1
T

R
T
0 �E�ðtÞdt, where �E�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�j½HðtÞ � E�ðtÞ�2j�ip
is the energy spread and E�ðtÞ ¼ h�jHðtÞj�i is computed
on the state j�i, and � ¼ 1, 2 labels different choices of
j�i. For � ¼ 1, we follow Ref. [6] and take j�i to be either
the initial state jc ð0Þi or the target state jc Gi, whichever
results in the smaller �E1. For � ¼ 2, we choose j�i ¼
jc ðtÞi, which means we effectively divide the total evolu-
tion time T into smaller intervals dt over whichHðtÞ can be
assumed to be constant, and apply to each of them the
Bhattacharyya bound [7] for time-independent
Hamiltonians. The bound on the minimum transfer time
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FIG. 3 (color online). Left: Infidelity as a function of the
number of iterations n for a spin chain of length N ¼ 101 and
different durations T (in units of @=J). Right: Minimum infidelity
I for chain length N and the (rescaled) transfer time ðT � bÞ=N
[b� 1:53 is the y-axis intercept of the function T�

QSLðNÞ reported
in the inset], showing the expected linear behavior of TQSL with

the size N. The green line follows from the estimate T�
QSL of the

QSL time obtained by choosing the time TðNÞ at which the
infidelity reaches the value I� ¼ 5� 10�5 for n ¼ 105.
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is then given by TQSL=ðN � 1Þ � maxf �
2�E1

; �
2�E2

g, which
needs to be satisfied by any HðtÞ that brings jc ð0Þi to the
target state jc Gi in a time T. Since we have taken the time
average of the bound, we interpret the quantum speed limit
as describing the minimum transfer time ’’per site’’. In
Fig. 4 (left), we report �E2ðtÞ as a function of time for two
different total transfer times. The energy spread is almost
constant save near the final time, where large oscillations
are present, corresponding to the deceleration of the spin
wave. The picture that arises is that OC finds a solution
xoptðtÞ that initially accelerates the spin excitation, and then
transfers it with constant velocity up to the end of the
chain, where deceleration occurs. The average energy
spreading �E2ðtÞ is larger for smaller time transfer T
allowing for a higher average excitation velocity. We fi-
nally compare the estimated optimal time T�

QSL from

Fig. 3 (right) with the analytical estimate of the QSL given
above. The results are reported in Fig. 4 (right) where the
two quantities are compared: both estimators are linearly
dependent on N, but the numerical results show an im-
provement over the theoretical prediction by a factor of
� � 3, which we attribute to the difficulty in formulating
the quantum speed limit for our many-body problem. One
can think of the optimal transfer of the excitation as being
facilitated by a cascade of effective swaps. As before, the
agreement of scaling of the two results shows that even in
the presence of additional constraints the OC reaches the
ultimate dynamical bounds set by quantum mechanics.
Indeed, we achieved an improvement of the transfer time
with respect to Ref. [18] of up to 2 orders of magnitude. It

is also worth mentioning that we achieved a transfer time
faster than that obtained (for Ising coupling) in Ref. [19].
Interestingly enough, however, our method only uses
single-site local pulses while in Ref. [19] this was achieved
using global pulses that operate jointly on the whole chain.
In summary, we have demonstrated that there are fun-

damental constraints governing the efficiency of the
Krotov quantum OC algorithm dictated by the maximum
speed at which a quantum state can evolve in time. These
results provide a further link between control theory and
quantum dynamics.
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