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Granger causality is a statistical notion of causal influence based on prediction via vector autore-

gression. Developed originally in the field of econometrics, it has since found application in a broader

arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of

time-directed information transfer between jointly dependent processes, has gained traction in a similarly

wide field. While it has been recognized that the two concepts must be related, the exact relationship has

until now not been formally described. Here we show that for Gaussian variables, Granger causality and

transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic ap-

proaches to data-driven causal inference.
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The problem of inferring causal interactions from data
has challenged scientists and philosophers for centuries
[1]. One approach that has become increasingly popular
over recent years was introduced originally by Wiener [2],
and formalized in terms of linear autoregression by
Granger [3]. According to Wiener-Granger causality
(G causality), given sets of interdependent variables X
and Y, it is said that ‘‘Y G-causes X’’ if, in an appropriate
statistical sense, Y assists in predicting the future of X
beyond the degree to which X already predicts its own
future. Importantly, identification of a G-causality interac-
tion is not identical to identifying a physically instantiated
causal interaction in a system. Although the two descrip-
tions are intimately related [4,5], physically instantiated
causal structure can only be unambiguously identified by
perturbing a system and observing the consequences [1].
Nonetheless, G causality is pragmatic, well defined, and
has delivered many insights into the functional connectiv-
ity of systems in a variety of fields, particularly in neuro-
science [6].

The information-theoretic notion of transfer entropywas
formulated by Schreiber [7] as a measure of directed (time-
asymmetric) information transfer between joint processes.
In contrast to G causality, transfer entropy is framed not in
terms of prediction but in terms of resolution of uncer-
tainty. One can say that ‘‘the transfer entropy from Y toX’’
is the degree to which Y disambiguates the future of X
beyond the degree to which X already disambiguates its
own future. There is therefore an attractive symmetry
between the notions (‘‘predicts’’ $ ‘‘disambiguates’’)
which has been noted previously (see, e.g., [8]) but never
explicitly specified. In this Letter we show that under
Gaussian assumptions G causality and transfer entropy
are in fact entirely equivalent. Our results therefore provide

a framework for inferring causality which unifies
information-theoretic and autoregressive approaches.
We use a standard mathematical vector-matrix notation

in which bold type generally denotes vector quantities and
uppercase type denotes matrices or random variables, ac-
cording to context. All vectors are considered to be row
vectors. The symbol T denotes the transpose operator and
� denotes concatenation of vectors, so that for x ¼
ðx1; . . . ; xnÞ and y ¼ ðy1; . . . ; ymÞ, x � y is the 1�ðnþmÞ
vector (x1; . . . ; xn, y1; . . . ; ym).
Given jointly distributed multivariate random variables

(i.e., random vectors) X, Y, we denote by �ðXÞ the n� n
matrix of covariances covðXi; XjÞ and by �ðX;YÞ the n�
m matrix of cross-covariances covðXi; Y�Þ. We then use
�ðXjYÞ to denote the n� n matrix

� ðXjYÞ � �ðXÞ ��ðX;YÞ�ðYÞ�1�ðX;YÞT (1)

defined when �ðYÞ is invertible. �ðXjYÞ appears as the
covariance matrix of the residuals of a linear regression of
X on Y [cf. Eq. (3) below]; thus, by analogy with partial
correlation [9] we term�ðXjYÞ the partial covariance [10]
of X given Y.
Suppose we have a multivariate stochastic process Xt

in discrete time [11] (i.e., the random variables Xti are

jointly distributed). We use the notation XðpÞ
t �

Xt � Xt�1 � � � � � Xt�pþ1 to denote X itself, along with

p� 1 lags, so thatXðpÞ
t is a 1� pn random vector for each

t. Given the lag p, we use the shorthand notation X�
t �

XðpÞ
t�1 for the lagged variable.
Let X, Y be jointly distributed random vectors and

consider the linear regression

X ¼ �þ Y � Aþ "; (2)
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where the m� n matrix A comprises the regression coef-
ficients, � ¼ ð�1; . . . ; �nÞ are the constant terms, and the
random vector " ¼ ð"1; . . . ; "nÞ comprises the residuals.
The mean squared error may then be written in terms of the
covariance matrix of the residuals as E2 ¼ trace½�ð"Þ�. E2

is just the sum of the variances of the "i, sometimes known
as the total variance. Performing an ordinary least squares
(OLS) to find the coefficients A that minimize E2 yields
[assuming �ðYÞ invertible] A ¼ �ðYÞ�1�ðX;YÞT and we
find that for the least squares fit the covariance matrix of
the residuals is given by

� ð"Þ ¼ �ðXjYÞ (3)

with �ðXjYÞ the partial covariance as defined by (1). We
note that the same coefficients A which minimize the total
variance E2 also minimize the generalized variance j�ð"Þj
[12], where j � j denotes the determinant (this procedure is
sometimes referred to as ‘‘least generalized variance’’; see,
e.g., [13]).

If the residuals " can be taken to be uncorrelated with the
regressors Y in (2)—as would be the case, for instance, for
a multivariate autoregressive (MVAR) model—the residual
covariance matrix can be derived directly from (2). Taking
the covariance of both sides of (2) yields

� ðXÞ ¼ AT�ðYÞAþ�ð"Þ: (4)

Since the residuals and regressors are uncorrelated, we also
have

0 ¼ �ðY; "Þ
¼ �ðY;X� �� Y � AÞ
¼ �ðX;YÞT ��ðYÞA: (5)

Solving (5) for A and substituting in (4) we recover Eq. (3)
for �ð"Þ. We note that Eqs. (4) and (5) are essentially Yule-
Walker equations [6] for the regression (2).

Suppose now we have three jointly distributed, station-
ary [14] multivariate stochastic processes Xt, Yt, Zt (‘‘var-
iables’’ for brevity). Consider the regression models

X t ¼ �t þ ðXðpÞ
t�1 � ZðrÞ

t�1Þ � Aþ "t; (6)

X t ¼ �0
t þ ðXðpÞ

t�1 � YðqÞ
t�1 � ZðrÞ

t�1Þ � A0 þ "0t; (7)

so that the ‘‘predictee’’ variable X is regressed first on the
previous p lags of itself plus r lags of the conditioning
variable Z and second, in addition, on q lags of the ‘‘pre-
dictor’’ variable Y [15]. The G causality of Y to X given Z
is a measure of the extent to which inclusion of Y in the
second model (7) reduces the prediction error of the first
model (6).

The standard measure of G causality in the literature is
defined for univariate predictor and predictee variables Y
and X, and is given by the natural logarithm of the ratio of
the residual variance in the restricted regression (6) to that

of the unrestricted regression (7). In our notation [16]

F Y!XjZ � ln

�
varð"tÞ
varð"0tÞ

�
¼ ln

�
�ð"tÞ
�ð"0tÞ

�

¼ ln

�
�ðXjX� � Z�Þ

�ðXjX� � Y� � Z�Þ
�
; (8)

where the last equality follows from the general formula
(3). By stationarity this expression does not depend on time
t, so we drop the subscript when there is no danger of
confusion. Note that the residual variance of the first
regression will always be larger than or equal to that of
the second, so that F Y!XjZ � 0 always. As regards statis-

tical inference, it is known that the corresponding maxi-

mum likelihood estimator F̂ Y!XjZ will have

(asymptotically for large samples) a �2 distribution under
the null hypothesis F Y!XjZ ¼ 0 [17,18] and a noncentral

�2 distribution under the alternative hypothesis F Y!XjZ >
0 [19,20].
Although rarely considered in the literature, there is no

requirement in principle that either the predictee or pre-
dictor variable be univariate. In this Letter we address the
general case where all variables are allowed to be multi-
variate; see [21,22] for motivation and discussion regard-
ing this generalization. For the case of a multivariate
predictor, Eq. (8) above (with Y replaced by the bold-
type Y) is a valid and consistent formula for G causality.
However, generalization to the case of a multivariate pre-
dictee is less clear-cut and there does not yet appear to be a
standard definition for G causality in the literature. Here
we use an extension first proposed by Geweke [19], in
which the residual variance varð"tÞ ¼ �ð"tÞ is replaced
by the generalized variance j�ð"tÞj:

F Y!XjZ � ln

�j�ð"tÞj
j�ð"0tÞj

�

¼ ln

� j�ðXjX� � Z�Þj
j�ðXjX� � Y� � Z�Þj

�
: (9)

This formula always produces a non-negative quantity, and
for a univariate predictee reduces to (8). Moreover, its
estimator is also asymptotically �2 distributed. Geweke
[19] lists a number of motivations for this choice, to which
we add the result presented in this Letter. [An alternative
formulation for multivariate G causality is proposed in
[21], although see [22] for more detailed discussion and
further motivation for the form (9).]
With Xt, Yt, Zt as before, the transfer entropy of Y to X

given Z [7,23] is defined as the difference between the
entropy of X conditioned on its own past and the past of Z,
and its entropy conditioned, in addition, on the past of Y:

T Y!XjZ � HðXjX� � Z�Þ �HðXjX� � Y� � Z�Þ;
(10)

whereHð�Þ denotes entropy andHð�j�Þ conditional entropy.
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Again, by stationarity transfer entropy does not depend on
time t, and T Y!XjZ � 0 always. T Y!XjZ may be under-

stood as the degree of uncertainty ofX resolved by the past
of Y over and above the degree of uncertainty ofX resolved
by its own past. As with Granger causality, the transfer
entropy literature generally deals only with univariate var-
iables, although in this case the extension (10) to the
multivariate case is unproblematic.

We now turn to the equivalence with G causality. For a
multivariate Gaussian random variable X we have the
well-known expression [24]

HðXÞ ¼ 1
2 lnðj�ðXÞjÞ þ 1

2n lnð2�eÞ
for entropy in terms of the determinant of the covariance
matrix, where n is the dimension of X. We now show that
the conditional entropy HðXjYÞ for two jointly multivari-
ate Gaussian variables may be expressed in terms of the
determinant of the corresponding partial covariance ma-
trix:

HðXjYÞ ¼ 1
2 lnðj�ðXjYÞjÞþ 1

2n lnð2�eÞ: (11)

To see this, we have

HðXjYÞ � HðX � YÞ �HðYÞ
¼ 1

2 lnðj�ðX � YÞjÞ� 1
2 lnðj�ðYÞjÞþ 1

2n lnð2�eÞ:
Now

� ðX � YÞ ¼ �ðXÞ �ðX;YÞ
�ðX;YÞT �ðYÞ

� �

and from the block determinant identity [25]��������
A B
C D

��������¼ jDjjA� BD�1Cj

we have

j�ðX � YÞ ¼ j�ðYÞj � j�ðXjYÞj
from which we obtain (11) [26].

If, then, the processes Xt, Yt, Zt are jointly multivariate
Gaussian (i.e., any finite subset of the component variables
Xti, Ys�, Zua has a joint Gaussian distribution) it follows
from (11) that the expression (10) for transfer entropy
becomes [27]

T Y!XjZ � 1

2
ln

� j�ðXjX� � Z�Þj
j�ðXjX� � Y� � Z�Þj

�
: (12)

Comparing (12) with (9) leads directly to our central result:
if all processes are jointly Gaussian, then

F Y!XjZ ¼ 2T Y!XjZ (13)

so that Granger causality and transfer entropy are equiva-
lent up to a factor of 2. This result holds, in particular, for a
univariate predictee X with the standard definition (8) of
G causality.

Empirically, numerical equivalence betweenG causality
and transfer entropy will depend on the method used to
estimate the transfer entropy in sample. If it is assumed at
the outset that the data may be reasonably modeled as
Gaussian—and that, consequently, conditional entropies
may be estimated from the appropriate sample covariance
matrices—then, of course, numerical equivalence will be
guaranteed. If, however, conditional entropies are esti-
mated directly from sampled probability distributions, re-
sults will vary with the estimation technique. It is known
that naive estimation of transfer entropy by partitioning of
the state space is problematic [7] and that such estimators
frequently fail to converge to the correct result [23]. In
practice, more sophisticated techniques such as kernel [28]
or k–nearest neighbor estimators [29,30], will need to be
deployed; however, such techniques may entail their own
assumptions about the empirical distribution of the data
(see [23] for a good discussion on these points).
Furthermore, unlike G causality, for which the (asymp-
totic) distribution of the sample statistic is known, we are
not aware of any such general result for transfer entropy.
Thus, in particular, significance testing for transfer entropy
estimates is likely to be hard.
Our result (13) provides for the first time a unified

framework for data-driven causal inference that bridges
information-theoretic and autoregressive methods. In par-
ticular, it opens new research possibilities in transforming
findings originally developed in one domain into the other.
For example, an advantage of the autoregressive approach
is that it admits a straightforward decomposition by fre-
quency [6,19]. Our result now provides a foundation for the
development of spectral implementations of transfer en-
tropy. In the opposite direction, the invariance of
information-theoretic quantities under general nonlinear
transformations [23] could potentially prove useful in the
identification of appropriate nonlinear autoregressive mod-
els [31,32]. Preliminary work by the authors indicates,
perhaps surprisingly, that under Gaussian assumptions
there is nothing extra to account for by nonlinear exten-
sions to G causality, since a stationary Gaussian AR pro-
cess is necessarily linear [22]. This finding has practical
significance because sensitivity to nonlinear data features
is often presented as a reason to prefer transfer entropy to
G causality (see, e.g., [33]).
As regards Gaussian assumptions, although their appro-

priateness may be disputed in the context of specific physi-
cal systems, they are, nevertheless, widely employed in
neuroscience, econometrics, and beyond, frequently in the
role of an analytical benchmark for subsequent more
physically motivated analysis. In practice, given empirical
data it is likely to be difficult to establish the extent to
which Gaussian assumptions are tenable, particularly for
highly multivariate data sets and limited sample sizes.
Further research is thus required to characterize—both
analytically and in sample—the manner in which the
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equivalence (13) breaks down when Gaussian assumptions
fail. As a starting point it is known, at least, that in the
generic (non-Gaussian) case, nonzero G causality implies
nonzero transfer entropy [34].

More generally, G causality is typically implemented
within the well-understood and easily applicable frame-
work of MVAR modeling. This implementation, however,
implies many assumptions about how to model the data.
Transfer entropy by contrast, although on a theoretical
level ‘‘model agnostic’’ (in the sense that it involves no
presumptions about the joint statistical distribution of the
data), may present severe difficulties in empirical applica-
tion. Investigators, then, are free to use whichever practical
methods best suit their data. Numerical issues aside, the
analytical equivalence (13) furnishes the essential point
that—under Gaussian assumptions—G causality has a
natural interpretation as transfer entropy and vice-versa.
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