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We demonstrate that, in contrast with the single-component Abrikosov vortex, in two-component

superconductors vortex solutions with an exponentially screened magnetic field exist only in exceptional

cases: in the case of vortices carrying an integer number of flux quanta and in a special parameter limit for

half-quantum vortices. For all other parameters, the vortex solutions have a delocalized magnetic field

with a slowly decaying tail. Furthermore, we demonstrate a new effect which is generic in two-component

systems but has no counterpart in single-component systems: on exactly half of the parameter space of the

Uð1Þ �Uð1Þ Ginzburg-Landau model, the magnetic field of a generic fractional vortex inverts its

direction at a certain distance from the vortex core.
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The two-component Ginzburg-Landau (TCGL) model,
in which two independent superconducting components
interact with each other via a coupling to a vector potential,
appears in various physical contexts. It describes the pro-
jected quantum liquid states of metallic hydrogen and its
isotopes under high pressure [1–4], where superconductiv-
ity of electrons coexists with superconductivity of protons
or a Bose condensate of deuterons. Similar models de-
scribe neutron star interiors, where the two superconduct-
ing components represent possible protonic and ��
hyperonic Cooper pairs [5]. There are also various physical
situations where theUð1Þ �Uð1Þ TCGLmodel arises as an
effective description [6]. The crucially important excita-
tions appearing in the physics of rotational and magnetic
responses, fluctuations, and phase transitions in these sys-
tems are the topological defects (vortex lines and loops).
Qualitative analysis of the Uð1Þ �Uð1Þ symmetric TCGL
model indicates that it allows vortex excitations carrying
an arbitrary fraction of the standard flux quantum, where
the fraction is determined by a continuous parameter, the
ratio of superfluid densities [1]. There is also growing
interest in various unusual integer-flux vortex solutions
which can be viewed, in this model, as bound states of
fractional-flux vortices [7,8]. So far, fractional-flux vor-
tices in these theories have been discussed [1] only in the
so-called London limit, a mathematical simplification
wherein the condensate densities are assumed to be con-
stant outside the vortex core, which is modeled by a sharp
cutoff. It is well known that in single-component systems,
the London limit gives a qualitatively accurate picture of
the behavior of the fields of a vortex in the full Ginzburg-
Landau model; in particular, it correctly predicts that the
magnetic field varies monotonically and is screened expo-
nentially at large distances.

In this Letter, we demonstrate that the situation in the
two-component case is entirely different. We find that
vortex solutions in the TCGL model are, in fact, qualita-
tively different from the solutions obtained in the London
limit and exhibit highly unusual behavior for a system that
has a Meissner effect. Namely, we find that the magnetic
flux of a fractional vortex is generically not exponentially
localized in space but has a long tail which decays accord-
ing to a 1=r4 power law. The magnetic field has a tendency
to get extremely delocalized for small fractions of flux
quanta, where the maximum of the magnetic field at the
vortex center becomes barely distinguishable. This effect
can be understood using explicit asymptotic formulas we
obtain for the magnetic field and condensate densities at
long range in terms of the TCGL model parameters. These
formulas show, moreover, that under quite generic condi-
tions in the multicomponent superconductor, the magnetic
field in a fractional-flux vortex can reverse its direction at a
certain distance from the core, in stark contrast to vortex
solutions in single-component superconductors.
The system of interest is the Uð1Þ �Uð1Þ symmetric

TCGL model with free energy

E ¼ 1
2

Z
dxdyfjð@k þ ieAkÞc 1j2 þ jð@k þ ieAkÞc 2j2

þ �1ðu21 � jc 1j2Þ2 þ �2ðu22 � jc 2j2Þ2 þ ð�ij@iAjÞ2g:
(1)

Here c 1;2 are two complex scalar fields corresponding to

two superconducting order parameters. The model (1) is
realized in physical systems where the electrodynamics is
local and Josephson-like coupling between condensates is
forbidden. We have given the condensates equal electric
charge, but the results apply equally well for a system of
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oppositely charged condensates [2–5] since the model (1)
is invariant under inversion of the sign of the charge of a
condensate accompanied by complex conjugation of that
condensate. The results can be straightforwardly general-
ized to include other terms in the effective potential, or
mixed gradient terms, so long as these are consistent with
the Uð1Þ �Uð1Þ symmetry. Vortices in this model are
solutions of the Euler-Lagrange equations

ð@k þ ieAkÞ2c 1 þ 2�1ðu21 � jc 1j2Þc 1 ¼ 0; (2)

ð@k þ ieAkÞ2c 2 þ 2�2ðu22 � jc 2j2Þc 2 ¼ 0; (3)

� �kj@jB ¼ Jk; (4)

where Jk is the supercurrent Jk ¼ i
2 efc 1ð@k � ieAkÞc �

1 �
c �

1ð@k þ ieAkÞc 1 þ c 2ð@k � ieAkÞc �
2 � c �

2ð@k þ
ieAkÞc 2g. In the first part of this Letter, we seek solutions
of this system within the axially symmetric ansatz

ðA1;A2Þ ¼ aðrÞ
r

ð� sin�;cos�Þ; c i ¼�iðrÞe�ini�; (5)

which amounts to imposing 2�ni winding on the phase of
condensate c i, where ni are integers. Here xþ iy ¼ rei�

and aðrÞ, �iðrÞ are real profile functions. Note that in
certain cases, the axial symmetry of vortex solutions in
this model was found to be spontaneously broken [7].
However, in the cases studied below, the solutions are
axially symmetric, as verified by the numerical simulations
presented in the second part of the Letter. In what follows,
we are looking for localized solutions in the sense that
jJj ! 0 and �i ! ui as r ! 1. It follows that

aðrÞ ! a1 ¼ 1

e
�; where � ¼ n1u

2
1 þ n2u

2
2

u21 þ u22
: (6)

By Stokes’s theorem, it follows that the total magnetic flux
through the xy plane is

R
Bdxdy ¼ 2�

e �, which is a frac-

tional multiple� of the usual flux quantum if n1 � n2 [1].
Substituting (5) into (2)–(4) yields a coupled system of

ordinary differential equations

�00
1 þ

�0
1

r
� ðn1 � eaÞ2

r2
�1 þ 2�1ðu21 � �2

1Þ�1 ¼ 0; (7)

�00
2 þ

�0
2

r
� ðn2 � eaÞ2

r2
�2 þ 2�2ðu22 � �2

2Þ�2 ¼ 0; (8)

a00 � a0

r
� e½aeð�2

1 þ �2
2Þ � n1�

2
1 � n2�

2
2� ¼ 0; (9)

subject to the boundary conditions a ! a1, �1 ! u1, and
�2 ! u2 as r ! 1. Solutions with n1 ¼ n2 carry integer
flux and were considered in Ref. [7]. They turn out to have
a much richer variety of interaction behavior than
Abrikosov vortices. However, just like their single-
component counterparts, the modulation of the fields jc ij
and jBj is exponentially localized in space. Here we ob-
serve that, by contrast, if n1 � n2, neither n1 � ea nor
n2 � ea approaches zero as r ! 1, and consequently it

follows from (7) and (8) that neither �1 nor �2 can ap-
proach its boundary value (u1, u2, respectively) exponen-
tially fast. So, in contrast to integer-flux vortices, for
fractional-flux vortices the densities jc ij can recover their
asymptotic values only according to some power law.
Since the third terms in (7) and (8) decay like r�2, it is
consistent to assume (the assumption is verified below) that

�iðrÞ � ui � �ir
�2; i ¼ 1; 2 (10)

at large r for some real coefficients �1, �2. Then �00
i , �

0
i=r

are Oðr�4Þ, and demanding that the leading term (order
r�2) vanishes gives the prediction

�i ¼ ðni ��Þ2
4�iui

; i ¼ 1; 2: (11)

Note that�i > 0, so�i approaches its boundary value from
below, as one expects. From (9), it is then consistent to
assume (again, verified below) that

aðrÞ ��

e
� �r�2 (12)

at large r for some real coefficient �. Again, a0, a0=r are
order r�4, and demanding that the leading term in (9)
vanishes leads one to predict that

� ¼ 1

2eðu21 þ u22Þ
�ðn1 ��Þ3

�1

þ ðn2 ��Þ3
�2

�
: (13)

Now B ¼ r�1a0ðrÞ, so in the case where�> 0 (e.g., if n1,
n2 � 0), aðrÞ interpolates between að0Þ ¼ 0 and a1 > 0,
so one expects a0ðrÞ> 0 uniformly, and hence BðrÞ> 0. In
particular, one expects aðrÞ to approach its boundary value
a1 from below, so that �> 0. But in this regard, formula
(13) contains a surprise: it is quite possible for � to be
negative. In this case, since BðrÞ � 2�r�4 at large r, we see
that the magnetic field has to flip its direction as one travels
out from the vortex core: it is positive for small r and
negative for large r. Let us introduce polar coordinates on
the u1u2 and �1�2 parameter planes, so u1 þ iu2 ¼ uei�

and �1 þ i�2 ¼ �ei	 where 0< � , 	< �
2 . Then

� ¼ ðn1 � n2Þ3
2eu2�

�
sin6�

cos	
� cos6�

sin	

�
; (14)

so �< 0 if and only if tan	< cot6� , which holds on
precisely half of the �	 square. Hence, not only can
magnetic flux reversal occur for fractional-flux vortices,
it is a generic effect which occurs on half the parameter
space of the TCGL model (see also remark [9]).
It is interesting to consider parameter values on the

curve tan	 ¼ cot6� , for which � � 0. At generic points
on this curve, aðrÞ � a1 � �0r�4, so for that family of
vortices the magnetic field B is power-law localized, but
with unusual power, decaying as r�6. However, we find
that a very special situation happens when the vortex
carries a half of the flux quantum and both condensates
have the same coherence length, that is, u1 ¼ u2, �1 ¼ �2

(i.e., 	 ¼ � ¼ �
4 ). This regime is relevant for physical

situations where such a TCGL model is dictated by sym-
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metry. Substituting power series Ansätze �iðrÞ ¼P1
k¼0 �i;kr

�k, aðrÞ ¼ P1
k¼0 �kr

�k into (7)–(9), we see

that it is consistent that aðrÞ ¼ a1 to all orders (i.e., �k ¼
0 for k � 1): Eqs. (7) and (8) then imply that �1ðrÞ ¼
�2ðrÞ to all orders (i.e., �1;k ¼ �2;k for all k), which is

consistent with (9) (whose left-hand side is then zero to all
orders). One is led to conclude, therefore, that exponential
localization of the magnetic field BðrÞ is recovered for the
half-quantum vortex at this symmetric parameter set de-
spite the density fields jc iðrÞj still being only r�2

localized.
To obtain more detailed knowledge of the behavior of

the profile functions of fractional-flux vortices and to con-
firm accurately the above calculations, we must perform
numerical computations. The shooting method for system
(7)–(9) described in Ref. [7] turns out to be hopelessly
unstable for fractional-flux vortices, so we must resort to a
relaxation method. We have discretized the system using
the method described in [10] and then used gradient based
optimization algorithms to find highly accurate minima of
the system energy for a given phase winding. It should be
noted that the numerical scheme does not impose rotational
symmetry, so if we obtain axially symmetric solutions (as
we do), we can be confident that they are stable against all
small perturbations.

In this second part of the Letter, we present the numeri-
cal results for the parameters e ¼ 2, �1 ¼ �2 ¼ 2=3, and
several values of ui. These parameters allow us to confirm
numerically the analytic calculations from the first part of
the Letter. The characteristic unusual features become
more pronounced with decreasing e, �i (i.e., the vortex

solution gets more delocalized and has more pronounced
field inversion tail). However, our choice of parameters
here is motivated by minimizing the effects of the bound-
ary of the numerical grid. We present detailed numerical
investigations of the following cases: [n1 ¼ 1, n2 ¼ 1,

u1 ¼ 1, u2 ¼
ffiffiffiffiffiffiffi
0:2

p
] (flux fraction � ¼ 1), [n1 ¼ 1, n2 ¼

0, u1 ¼ 1, u2 ¼
ffiffiffiffiffiffiffi
0:2

p
] (flux fraction � ¼ 5=6), and [n1 ¼

1, n2 ¼ 0, u1 ¼
ffiffiffiffiffiffiffi
0:2

p
, u2 ¼ 1] (flux fraction � ¼ 1=6).

Equation (10) indicates that the rate at which the density
approaches its ground state value at large distances de-
creases as its corresponding �i increases. This is indeed
confirmed by the plots in Fig. 1. The long distance behavior
of all of these agrees with (11): in the integer-flux case, the
densities recover their vacuum values exponentially fast, as
in the case of the Abrikosov vortex (and �1 ¼ �2 ¼ 0),
while in the fractional-flux cases, the behavior is �i=r

2. We
also find that the component c 2 (which does not have
phase winding) exhibits very unusual behavior near the
origin in the second case: its density has a local maximum
in the core. Observe that in our model we do not have terms
in the effective potential corresponding to direct interspe-
cies density-density interactions, and this unusual density
maximum in the core is caused purely by electromagnetic
interaction of the condensates. We explored this behavior
for a range of different values of u2. The results of three
characteristic cases with u2 2 f0:2; 0:4; 2g are shown in
Fig. 2, which suggests that decreasing u2 deepens the
‘‘W’’-shaped density modulation in the condensate without
phase winding. The maximum of c 2 originates in the fact
that the circulation of the supercurrent in the component
c 2 stems from the vector potential [see Eq. (3)]. At dis-
tances r � 
 from the core, we have �1 � rn1 , �2 � rn2 ,
and a� r2. The behavior of a shows that there is almost no
supercurrent circulation in c 2 near the origin of the vortex.
Consequently, jc 2j tries to minimize the energy by recov-
ering the ground state value of density at short r. Since

FIG. 1 (color online). Asymptotic behavior of the fields in the
two-component vortex: jc 1j (left) and jc 2j (right) with flux
fractions 1 (solid blue line), 5=6 (dashed green line), and 1=6
(dash-dotted red line). In accord with analytic calculations, in the
case of 1=6 flux quantum, jc 1j is strikingly delocalized; how-
ever, in the case of 5=6 flux quantum, the power-law tail is tiny
and the difference from the integer-flux case is barely visible.
The c 2 configuration is coreless but has a dip and local maxi-
mum at the origin. The dip is especially pronounced in the case
of 5=6 flux quanta and is almost invisible in the case of 1=6 flux
quanta [where jc 2ð0Þj ¼ 1 and jc 2ð3:2Þj 	 0:9996].

FIG. 2 (color online). The behavior near the vortex core: jc 1j
(left) and jc 2j (right) with flux fractions 5=6 (solid blue line),
5=7 (dashed green line), and 1=3 (dash-dotted red line). The
component with the phase winding jc 1j always has a singularity.
The other component always has a nonsingular W-shaped sup-
pression of density.
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there are no singularities of superfluid velocity in the
component c 2, the W-shaped density suppression can be
arbitrarily deep; however, it can never produce a zero-
density singularity in jc 2j.

Let us turn our attention to the magnetic field. From the
above analytic considerations, we expect the magnetic field
to approach zero exponentially if the flux fraction is an
integer. Also, exponential and high algebraic power 1=r6

localization of magnetic field is found in some cases for
half-quantum vortices. But in the general case, the mag-
netic field should have 1=r4 asymptotic behavior. Indeed,
this can be seen in Fig. 3, which shows the magnetic field
behavior in the same three cases whose density plots
appear in Fig. 1.

Figure 3 confirms the two main generic features of
vortex solutions in the TCGL model predicted in the first
part of the Letter: the delocalization of magnetic flux when
the fraction of the flux quantum is 1=6 and the delocaliza-
tion and reversal of magnetic flux when the fraction of the
flux quantum is 5=6. These features get even more pro-
nounced for weaker potentials and larger penetration
lengths.

In conclusion, we showed that, quite counterintuitively,
considering the solutions of the complete two-component
Ginzburg-Landau problem reveals new and unusual phys-

ics. Namely, we find that for generic fractional-flux vortex
solutions (except for the special parameter set of half-
quantum vortices) the magnetic field is delocalized, pos-
sessing a slowly decaying 1=r4 tail, and that on exactly half
of the model’s parameter space, the vortices exhibit mag-
netic flux inversion: near the origin of the vortex there is a
peak in magnetic field carrying flux in the positive direc-
tion of the z axis, while at a certain distance from the core
this field has a rapid reversal of direction, producing a tail
of magnetic field in the negative direction along the z axis.
These phenomena should have a number of physical con-
sequences. Field delocalization and inversion can serve as
an experimental signature of fractional vortices in super-
conductors with multiple components or in artificial super-
conducting structures with several magnetically coupled
superconducting components. The model describes the
projected quantum fluid of metallic hydrogen [2–4], a sub-
ject of renewed experimental pursuit. This magnetic field
delocalization effect should affect magnetic-response-
based techniques proposed to be the main tool to detect
the transition to the quantum fluid of metallic hydrogen and
suggested similar transitions in hydrogen-rich alloys and
deuterium [4].
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FIG. 3 (color online). The behavior of Bz near the origin of the
vortex (left panel) and long-range tail (zoomed in, right panel)
with flux fractions 1 (solid blue line), 5=6 (dashed green line),
and 1=6 (dash-dotted red line). We see behavior strikingly
different from the Abrikosov vortex: in case of 1=6-quantum
vortex, the magnetic field is extremely delocalized without a
pronounced maximum at the origin but already at r 	 3:5 having
larger value than the field of the one-quantum vortex . In the case
of 5=6 quantum, the vortex accumulates magnetic flux larger
than ð5=6Þ�0 near the origin, almost mimicking in this region
the Abrikosov vortex. However, the magnetic field rapidly goes
to zero at r ¼ 3:275
 0:0125, after which point the magnetic
field flips its direction, producing a slowly decaying power-law
tail of inverse flux. The delocalized magnetic flux in the outer
region subtracts from the strongly localized flux near the origin
to produce net flux ð5=6Þ�0. The dotted lines in the right panel
depict the curves predicted by Eq. (12).
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