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We describe experimental signatures of Majorana fermion edge states, which form at the interface

between a superconductor and the surface of a topological insulator. If a lead couples to the Majorana

fermions through electron tunneling, the Majorana fermions induce resonant Andreev reflections from the

lead to the grounded superconductor. The linear tunneling conductance is 0 (2e2=h) if there is an even

(odd) number of vortices in the superconductor. Similar resonance occurs for tunneling into the zero mode

in the vortex core. We also study the current and noise of a two-lead device.
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Introduction.—Verifying the existence of Majorana fer-
mions in condensed matter systems is an important topic in
recent years because of their potential application for
quantum computations which are free from decoherence
[1,2]. Quantum Hall states as well as superconductors and
superfluids with px þ ipy pairing symmetry are candidates

which support Majorana fermions [2–6]. However,
Majorana fermions in those systems are yet to be found.

Recently, Fu and Kane [7] proposed that Majorana
fermions can be created in the vortices of s-wave super-
conductors deposited on the surface of a three-dimensional
topological insulator [8–13]. Moreover, chiral Majorana
fermion edge states can be created at the interface between
a superconductor and the area gapped by ferromagnetic
materials [7], and several experiments with rather complex
geometry have been proposed to study them [14,15]. In this
Letter, we propose experiments with relatively simple
geometry to probe the chiral Majorana fermion edge states.

More specifically, we study the tunneling current and
noise from noninteracting Fermi leads to a grounded su-
perconductor which possesses chiral Majorana edge states
at its boundary. The experimental setup is shown in Fig. 1.
An s-wave superconducting island is deposited on the
surface of a topological insulator whose surface state is
described by gapless Dirac fermions [8,9]. A proximity gap
is induced on the surface under the superconductor as a
result of proximity effect [7,16,17]. The area outside the
superconductor is gapped by ferromagnetic materials. At
the interface between the superconductor and the ferro-
magnetic material, there are gapless chiral Majorana fer-
mion modes surrounding the superconductor [7,14,15].
One or two noninteracting Fermi leads are coupled to these
chiral Majorana modes at points a and bwith amplitudes t1
and t2, respectively.

We first consider the single-lead case by setting t2 to
zero in Fig. 1. We show that Majorana fermions induce
resonantAndreev reflections from the lead to the grounded
superconductor and result in highly nonlinear I-V curve
which is a set of steps. At small voltage, the conductance

from the lead to the superconductor is 0. However, the
presence of a vortex in the superconductor changes the
conductance to 2e2=h. For a two-lead device with nonzero
t2, crossed Andreev reflections may happen. In the small
voltage regime, crossed Andreev reflections dominate over
local Andreev reflections and the cross current-current
correlations of the two leads are maximally positively
correlated. On the other hand, the presence of a vortex in
the superconductor in the small voltage regime increases
the current dramatically and the cross current-current cor-
relations become maximally negatively correlated.
Single-lead device.—This two-terminal device is shown

in Fig. 1 by setting t2 to zero. For simplicity, let us assume
that there is only a single mode in lead 1. The Hamiltonian
of lead 1 is

HL1 ¼ �ivf

X
�¼R;L

X
�¼";#

Z þ1

0
c y

1��ðxÞ@xc 1��ðxÞdx; (1)

where the tip of the lead is located at x ¼ 0 and vf denotes

the Fermi velocity.HL1 contains both left and right moving
fields but setting c 1L�ðxÞ ¼ c 1R�ð�xÞ for x > 0 maps the

 

S1 S2 
t1 t2 

a b Vortex

Topological Insulator Surface 

M

 

FIG. 1 (color online). A superconducting island is deposited
on the surface of a three-dimensional topological insulator. The
area outside the superconductor is gapped by ferromagnetic
materials. At the interface between the superconductor and the
ferromagnetic material, there is a branch of chiral Majorana
fermions denoted by �. Two noninteracting leads are coupled to
the Majorana fermions at point a and point b with amplitudes t1
and t2, respectively. The superconductor is grounded.
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Hamiltonian into one described by chiral fields only:

HL1 ¼ �ivf

X
�¼";#

Z þ1

�1
c y

1�ðxÞ@xc 1�ðxÞdx: (2)

Let HM0 describe the chiral Majorana fermion mode sur-
rounding the superconductor [15] and HT1 the coupling
term between the lead and the chiral Majorana fermion
mode with coupling strength t1. The total Hamiltonian is

H1 ¼ HL1 þHM0 þHT1; (3)

where

HM0 ¼ ivm

Z L

0
�ðxÞ@x�ðxÞdx; and

HT1 ¼ �i
1ffiffiffi
2

p t1
X
�¼";#

�ðaÞ½��c 1�ð0Þ þ ��
�c

y
1�ð0Þ�:

(4)

In Eq. (4), vm denotes the Fermi velocity of the Majorana
mode. It is important to note that the Majorana mode on the
surface of the topological insulator includes both spin
components and has four instead of two components
as in the case of spin polarized p-wave superconductor.
Thus, the Majorana mode in Eq. (4) couples to both spin-up
and spin-down electrons. �� are complex numbers with
j��j ¼ 1.

We define two Fermi fields: c 1¼ 1ffiffi
2

p ð�"c 1" þ�#c 1#Þ and
c 0

1 ¼ 1ffiffi
2

p ð�"c 1" � �#c 1#Þ such that the Majorana fermion

couples to c 1 only. Dropping c 0
1 we have H0

1 ¼ H0
L1 þ

HM0 þHT1 whereH
0
L1 ¼ �ivf

Rþ1
�1 c y

1 ðxÞ@xc 1ðxÞdx and
HT1 ¼ �it1�ðaÞ½c 1 þ c y

1 �.
In order to calculate the tunneling current from the lead

to the grounded superconductor through its chiral
Majorana fermion modes, we first calculate the scattering
matrix of the model described by H0

1. Denoting the incom-
ing and outgoing scattering states of the electrons and holes

by c 1kð0�Þ and c y
1�kð0�Þ, respectively, the scattering

matrix can be written as

c 1kð0þÞ
c y

1�kð0þÞ
� �

¼ S
c 1kð0�Þ
c y

1�kð0�Þ
� �

; (5)

where

S¼ see seh

she shh

� �
¼ 1

Z

isinð�=2Þ �~t21 cosð�=2Þ
�~t21 cosð�=2Þ isinð�=2Þ
� �

: (6)

In Eq. (6), Z ¼ i sin½�ðk; nÞ=2� þ ~t21 cos½�ðk; nÞ=2� and
�ðk; nÞ ¼ kLþ �þ n� is the phase a Majorana fermion
with wave vector k acquires when it makes a complete
circle around the superconducting island. L is the circum-
ference of the island and � is Berry phase contribution
from the spin. n is the number of vortices in the supercon-
ductor. ~t1 ¼ t1=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi

vmvf
p Þ is dimensionless.

From the structure of the scattering matrix, it is obvious
that when �ðk; 0Þ=2 ¼ kLþ � ¼ 2m� with integer m,
jshej2 ¼ 1. In other words, when an incoming electron
has energy which matches an energy level of the quantized
chiral Majorana modes, there is a resonant Andreev reflec-

tion. This means that an incident electron from the lead is
converted into a backscattered hole with probability of
unity, independent of the coupling strength. We call this
Majorana fermion induced resonant Andreev reflection
(MIRAR). This is in sharp contrast to the usual normal
metal-insulator-superconductor junction in which the
Andreev reflection amplitude at fixed subgap energy al-
ways decreases with decreasing coupling strength.
To acquire a physical picture of MIRAR, we note that

for conventional resonant tunneling, unity transmission
requires tuning the coupling strengths of the resonant level
with the two leads to equal amplitude [Fig. 2(a)]. However,
when a lead is coupled to a Majorana fermion mode, the
lead plays the role of both an electron lead and a hole lead.
Because of its self-Hermitian property, the Majorana fer-
mion is ensured to couple to the electron and hole leads
with equal amplitude as can be seen in Eq. (4). This results
in resonant tunneling from the electron lead to the hole lead
[Fig. 2(b)].
The physical picture shows that MIRAR is a very gen-

eral phenomenon which happens whenever a discrete
Majorana state is coupled to a Fermi lead. Another inter-
esting example is the tunneling into the Majorana zero
mode expected to exist in the vortex core. This experiment
can be performed using a STM tip. The predicted linear
conductance of 2e2=h should be a spectacular signature of
the zero mode. When two vortices approach each other, the
zero modes are coupled and split into occupied and un-
occupied fermions and the resonance disappears once the
energy splitting exceeds the voltage and the temperature.
The mathematics is similar to tunneling into two localized
Majorana states considered by Nilsson et al. [18] even
though they focus on the regime of large splitting and did
not consider the resonant tunneling into an isolated vortex.
From the scattering matrix Eq. (6), the tunneling current

from the lead to the superconductor is

I¼2e

h

Z eV

0
TðEÞdE¼2e

h

Z eV

0

~t41ð1þcos�Þ
1�cos�þ~t41ð1þcos�ÞdE;

(7)
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FIG. 2 (color online). (a) Conventional resonant tunneling:
two leads are coupled to a resonant level with coupling ampli-
tudes t1 and t2, respectively. Resonant tunneling with unity
transmission probability can happen only if t1 ¼ t2.
(b) MIRAR: a single-lead coupled to a Majorana level plays
the role of both an electron lead and a hole lead. The coupling
amplitudes of the leads to the Majorana level are ensured to be
the same. The Majorana mode is attached to a superconductor
which is grounded.
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where TðEÞ denotes the Andreev reflection probability
jshej2 at energy E. Near cos� ¼ 1, TðEÞ can be cast into
the resonance form: TðEÞ ¼ �2

1=½ðE� ElÞ2 þ �2
1�, where

�1 ¼ 2~t21vm@=L and El ¼ ð2‘þ nþ 1Þ@vm�=L denote
the quantized energy levels of the chiral Majorana fermion
modes. Provided �1 is less than the level spacing, the
differential conductance dI=dV versus eV peaks at 2e2=h
whenever the electron energy is resonant with the
Majorana mode energy E‘. As seen from Fig. 3 the reso-
nance is shifted in voltage by half the level spacing when a
vortex is added. For eV � �, the conductance jumps
between 2e2=h and near zero. We consider this a clear
signature of the Majorana mode.

Two-lead device.—Next we couple to the chiral
Majorana mode with one more lead, by setting t2 to non-
zero in Fig. 1. The new Hamiltonian becomes H0

2 ¼ H0
1 þ

H0
L2 þHT2, where H

0
L2 and HT2 are H

0
L1 and HT1 with c 1,

t1, and a replaced by c 2, t2, and b, respectively.

The scattering matrix in the basics of (c 1k, c 2k, c
y
1�k,

c y
2�k) can be written as

S ¼ 1þ A A
A 1þ A

� �
; (8)

where

A ¼ 1

Z0
i~t21~t

2
2 sinð�2Þ � ~t21 cosð�2Þ �2�

1þ	�
~t1~t2 cosð�2Þ

�2	
1þ	�

~t1~t2 cosð�2Þ i~t21~t
2
2 sinð�2Þ � ~t22 cosð�2Þ

 !
:

(9)

In the above equation, Z0 ¼ �ið1þ ~t21~t
2
2Þ sinð�=2Þ þð~t21 þ ~t22Þ cosð�=2Þ, ~ti ¼ ti=ð2 ffiffiffiffiffiffiffiffiffiffiffiffi

vfvm
p Þ. �ðk; nÞ ¼ kLþ �þ

n� is the same as in the two-terminal case. 	ð�Þ is the
phase factor acquired by a Majorana mode propagating
from point aðbÞ to point bðaÞ.

Because of the special form of the scattering matrix, the
average current from lead i to the grounded superconductor
�Ii, and the current noise correlators Pij, can be written in a

compact form [18]:

�I i ¼ 2e

h

Z eV

0
ðAAyÞiidE; (10)

Pij ¼ e �Ii
ij þ 2e2

h

Z eV

0
½jAij þ ðAAyÞijj2

� jðAAyÞijj2�dE; (11)

where the current noise correlators are defined as

Pij ¼
Z þ1

�1
h½Iið0Þ � �Ii�½IjðtÞ � �Ij�i: (12)

The total current from the leads to the superconductor �I ¼
�I1 þ �I2 is

�I ¼ 2e

h

Z eV

0
TðEÞdE; (13)

where

TðEÞ¼1� ð1�~t41~t
4
2Þsin2ð�=2Þ

ð1þ~t21~t
2
2Þ2sin2�=2þð~t21þ~t22Þ2cos2ð�=2Þ

: (14)

For t1; t2 < 1, the resonant Andreev reflection condition is
E� El � 2@vfð~t21 þ ~t22Þ=L, where El are the energy levels

of the Majorana modes. As in the two-terminal device, the
I-V curve of the total current is highly nonlinear and is a set
of steps. In the small voltage regime with eV � 2@vfð~t21 þ
~t22Þ=L, the conductance is ½2~t21~t22=ð1þ ~t21~t

2
1Þ�ð2e2=hÞ when

there are no vortices in the superconductor. It is important
to note that the linear conductance is not 0 as in the two-
terminal case. We argue below that this is the consequence
of crossed Andreev reflections. If a vortex is created in the

superconductor, the conductance becomes 2e2

h because of

resonant Andreev reflection induced by the El ¼ 0
Majorana mode.
Crossed Andreev reflection is a process which an in-

coming electron from say, lead 1, is turned into an outgoing
hole in lead 2. As a result, one electron from each lead
tunnels into the superconductor to form a Copper pair. This
process is not allowed in the single-lead device. We show
below that measuring the shot noise of the tunneling cur-
rents can be used to reveal the mechanism of the tunneling
processes, whether they are due to local or crossed
Andreev reflections. In the following, we analyze the
shot noise in the small voltage regime with eV �
2@vfð~t21 þ ~t22Þ=L.
In this regime and in the absence of vortices, we have

�I 1 ¼ �I2 ¼ �I=2 ¼ 2e2V

h

~t21~t
2
2

1þ ~t21~t
2
2

: (15)

It is important to note that the individual contributions to
the total current �I from the two leads are equal and depend
on the products of the coupling strengths ~t1~t2 only. This is a
strong indication that the tunneling processes are domi-
nated by crossed Andreev reflections. In order to verify
this, we note that the noise correlators are given by

P11 ¼ P22 ¼ P12 ¼ P21 ¼ 2e3V

h

~t21~t
2
2

ð1þ ~t21~t
2
2Þ2

: (16)

FIG. 3 (color online). dI=dV vs eV with ~t41 ¼ 0:1. eV is in
units of �@vm=L and dI=dV is in units of 2e

2

h . Solid (dashed) line

represents the case with even (odd) number of vortices in the
superconductor.

PRL 103, 237001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

4 DECEMBER 2009

237001-3



From Eq. (16), we have Pii ¼ ½e=ð1þ ~t21~t
2
2Þ� �Ii. For

ð~t1~t2Þ2 � 1, the Fano factor which is defined as Pii=e �Ii
approaches 1, indicating that crossed Andreev reflections
dominate in this small voltage regime.

Another point is that the cross current-current correla-
tion function P12 ¼ ðP11 þ P22Þ=2. As pointed out in
Ref. [18], for any stochastic process the cross correlator
has to satisfy the condition jP12j � 1

2 ðP11 þ P22Þ. Thus,
the currents from the leads are positively correlated in a
maximal way, which is a consequence of crossed Andreev
reflections and consistent with the finding of Ref. [18]
where two leads are coupled to two localized Majorana
modes.

In the small voltage regime with odd number of vortices,
the average current from lead i to the superconductor is
�Ii ¼ ð2e2V=hÞ½~t2i =ð~t21 þ ~t22Þ� and the total current is �I ¼
2e2V
h , independent of the coupling strengths. In this regime,

P11 ¼ P22 ¼ �P12 ¼ �P21 ¼
~t21~t

2
2e

ð~t21 þ ~t22Þ2
2e2V

h
: (17)

A few comments of this result are in order. First, the
noise power of each individual leads are nonzero and
P11 ¼ ½~t22=ð~t21 þ ~t22Þ�e �I1 ¼ P22 ¼ ½~t21=ð~t21 þ ~t22Þ�e �I2. To
understand this result better, let us assume ~t1 � ~t2. In
this limit, P11 � e �I1. In other words, the Fano factor is 1.
Physically, it means that the tunneling events in lead 1 are
dominated by crossed Andreev reflections, which give a
Fano factor of 1 instead of 2 as in the case of tunneling into
a conventional superconductor which is dominated by local
Andreev reflections.

On the other hand, the Fano factor at lead 2 approaches
zero. This is expected because the majority of the current
from the two leads to the superconductor is carried by
lead 2. When ~t1 � ~t2 almost all the incoming electrons
from lead 2 are locally Andreev reflected. This is analo-
gous to the situation of a ballistic tunneling junction with
tunneling probability T where the Fano factor is sup-
pressed by a factor of (1� T). For T � 1, the Fano factor
approaches zero.

One more interesting point is that the total noise power
PT ¼ P

i;j¼1;2Pij is zero and P12 ¼ � 1
2 ðP11 þ P22Þ. In

other words, the two currents are negatively correlated in
a maximal way. It can be argued that this is a result of
crossed Andreev reflection and MIRAR.

Conclusion and discussion.—We show that Majorana
modes which couple to Fermi leads induce resonant
Andreev reflections from the leads to the superconductor.
At small voltage limit, the conductance from a single lead
to the superconductor is 0 (2e2=h) if there is an even (odd)
number of vortices in the superconductor. Attaching one
more lead to the Majorana fermion edge states introduces
crossed Andreev reflection. The currents from the two
leads can be maximally positively correlated or maximally

negatively correlated, depending on the parity of the num-
ber of vortices.
Our discussion can easily be extended to finite tempera-

ture T and it is clear that the effects we discussed will be
smeared out if the temperature is larger than the level
spacing of the Majorana fermions, T * @vm=L. In order
to have localized chiral Majorana modes, we require L >

@vf=�, where � is the proximity gap. For small � com-

pared to the chemical potential � of the surface state
relative to the Dirac point, the Fermi velocity of the
Majorana modes is vm � vfð�=�Þ2 [15]. Assuming the

conditions� ¼ 0:1 meV and� ¼ 1 meV can be achieved
experimentally, we have the condition kBT < 0:01� which
gives T < 10 mK. Larger T is possible if � is tuned closer
to the Dirac point. On the other hand, resonant tunneling
into the Majorana zero mode in the vortex core is subject to
the less stringent condition T <�Ewhere�E��2=EF is
the level spacing of states in the core.
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