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The ground state and the transport properties of graphene subject to the potential of in-plane charged

impurities are studied. The screening of the impurity potential is shown to be nonlinear, producing a

fractal structure of electron and hole puddles. Statistical properties of this density distribution as well as

the charge compressibility of the system are calculated in the leading-log approximation. The conductivity

depends logarithmically on �, the dimensionless strength of the Coulomb interaction. The theory is

asymptotically exact when � is small, which is the case for graphene on a substrate with a high dielectric

constant.
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A number of recent experimental [1–5] and theoretical
[6–16] investigations have studied the effect of charged
impurities on the properties of graphene [17] at its neutral-
ity point (NP). It has been shown that in response to the
random potential of impurities electron density becomes
very inhomogeneous. A deeper physical understanding of
these inhomogeneities is important for clarifying the true
nature of disorder in this new material. Hence, an analytic
approach to this problem is desirable. Below I present my
results in this direction.

As a model, I assume that impurities with random charge
�e and total concentration ni are distributed randomly on a
graphene sheet of area A. The system resides in a medium
of dielectric constant �. The strength of the Coulomb
interaction, UðrÞ ¼ e2=�r, is characterized by the parame-
ter � ¼ e2=�@v where v is the Fermi velocity.

My main results are as follows. For � � 1 where the
interaction is weak, � � 1, the basic electronic properties
of graphene at the NP can be computed to the leading order
in 1=L, where L � 1 is the solution of the equation

L ¼ lnð1=ð4�LÞÞ: (1)

I find that the charge compressibility �0 at the NP (mea-
sured in Ref. [5]) is given by

�0 ¼ �=ð2�e2RÞ; R ¼ ‘=ð4�LÞ; (2)

where R is the screening length and ‘ ¼ ð2� ffiffiffiffiffi
ni

p Þ�1 � R
has the meaning of a typical quantum uncertainty in the
quasiparticle positions. Observables, such as the correlator
SðrÞ � hnðrÞnð0Þi of the local density become nontrivial on
scales r > ‘. For such r, I find

SðrÞ ¼ L2

2�‘4
½3#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� #2

p
þ ð1þ 2#2Þ arcsin#�; (3)

#ðrÞ ¼ KðrÞ
Kð‘Þ ; Kð‘Þ ¼ �

2

�
@v

‘

�
2
L: (4)

Here KðrÞ � h�ð0Þ�ðrÞi is the correlator of the screened
random potential �. I show that KðrÞ behaves as

KðrÞ ¼ �

2

�
@v

‘

�
2 �

�
lnðR=rÞ; ‘ � r � R;
2ðR=rÞ3; R � r:

(5)

Equation (5) agrees with the results of Ref. [13] in the limit
� � 1. Equation (3) is in a qualitative agreement with the
numerical simulations [15] for �� 1 (where my theory is
at the border of validity).
Of special interest for transport and imaging experi-

ments are the contours nðrÞ ¼ 0, which separate electron
[nðrÞ> 0] and hole [nðrÞ< 0] regions. Only contours
larger than some minimum size ��1 are important for
the key observables (in imaging, ��1 is the spatial resolu-

tion; in transport, ��1 � ‘
ffiffiffiffiffi
L

p
, see below). To isolate

them, we can separate the total density and the total
potential into smoothly and rapidly varying parts,

nðrÞ ¼ �nðrÞ þ �nðrÞ; �ðrÞ ¼ ��ðrÞ þ ��ðrÞ; (6)

where �nðrÞ and ��ðrÞ contain only Fourier harmonics with
k <�. Below I assume that 1=‘ & � � 1=R. I refer to the
contours �nðrÞ ¼ 0 as the p-n junctions (PNJ). I show that
most of the PNJ are closed loops of diameter d���1.
They reside inside of successively larger loops, forming a
self-similar set. The fractal dimension Dh of the PNJ
contours is equal to 3=2 at d < R but becomes 7=4 at
d > R. Finally, the conductivity at the NP is

�NP ¼ ðe2=hÞcL; c ¼ 0:50� 0:05: (7)

This result is supposed to be valid at temperatures high
enough that weak localization effects [18] can be neglected
but low enough that elastic scattering by impurities is still
the dominant current relaxation mechanism.
A similar expression for �NP can be deduced from

Ref. [13]. It has c ¼ 4=� for � � 1, which is larger
than my value of c by about a factor of 2. Numerical
estimates of �NP at �� 1 were reported in Ref. [16].
Let us turn to the derivation. Let VðrÞ be the bare random

potential due to impurities. In the k space it is given by
Vk ¼ UkNk, where Nk and Uk ¼ 2��@v=k are the
Fourier transforms of the impurity density and the

Coulomb potential, respectively. At 0< k � n1=2i we can
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treat them as zero-mean Gaussian random variables
with variances hNkNk0 i ¼ Ani�k;�k0 and hVkVk0 i ¼
U2

khNkNk0 i. It is easy to see then that the coarse-grained
random potential �VðrÞ is infrared divergent [19]:

h �V2ðrÞi ¼ X
k<�

hVkVk0 i ’ ð�=2Þð@v=‘Þ2 lnð� ffiffiffiffi
A

p Þ: (8)

This divergence is of course cured once the bare potential
is replaced by a screened one,

�k ¼ Vk þ nkUk ¼ Vk þ ð2��@v=kÞnk; (9)

which is expected to have the following properties:

�k ¼ Vk; kR� 1; �k ¼ Vk

kR

1þ kR
; kR� 1:

(10)

The last equation follows from the definition of the ther-
modynamic charge compressibility�0 ¼ �nk=�k and the
relation between �0 and R, Eq. (2). I wish to show that R is
given by the second formula in Eq. (2), in particular, that it
is a function of the impurity concentration. This means that
the screening is nonlinear; i.e., the response of electrons in
graphene to long-wavelength Fourier harmonics k < R�1

is nonperturbative in Vk.
Formally, nðrÞ and �ðrÞ can be sought by minimiz-

ing the total energy E½n� þ E½n�, where E½n� ¼
A�1

P
kV�knk þ ð1=2ÞUkjnkj2 is the electrostatic energy

and E½n� is the sum of kinetic, exchange, and correlation
energies [20]. Since the functional E½n� is nonlocal, non-
linear, and strictly speaking, unknown, further steps require
approximations. We are aided by the parameter L; the
condition L � 1 ensures separation of two length scales:
(i) the typical quantum uncertainly ‘ over which the non-
locality of E½n� is important and (ii) the screening length
R � ‘ at which the nonlinear screening sets in. As a result,
a local density approximation E ¼ R

dr"ð �nðrÞÞ is valid and
the total energy is minimized when

��ðrÞ ¼ �"0ð �nðrÞÞ: (11)

The kernel "ðnÞ can be computed by integrating out the
rapid density fluctuations �nðrÞ within the linear-response
theory [6] for � � 1. The result is [21]

" ¼ 2
ffiffiffiffi
�

p
3

@vj �nj3=2 þ �"; �" ¼ � 3"

4j �nj‘2 ln

�
kF
�

�
:

(12)

Here kFðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j �nðrÞjp

is the local Fermi momentum.
Equation (11) can now be easily inverted to give

�nð ��Þ ’ �
��j ��j

�ð@vÞ2 �
sgnð ��Þ
2‘2

ln
j ��j
@v�

; j ��j � @v�:

(13)

Later, we will also need the derivative of function �nð ��Þ:

�ð ��Þ � � d �n

d ��
’ 2

�

j ��j
ð@vÞ2 þ

1

2‘2j ��j ; j ��j � @v�:

(14)

We have reduced the original quantum problem to the
nonlinear integral equation (13) for the classical quantity

�nðrÞ [Note that ��½ �n� is given by Eq. (9).] I call this a
renormalized Thomas-Fermi approximation (RTFA) [22].
In conventional gapped semiconductors, this would be

about as far as one could go analytically before having to
resort to heuristic estimates [23], computer simulations
[19], or variational methods [24]. The reason is as follows:
the energy minimization is constrained by �nðrÞ 	 0, lead-
ing to a finite area fraction of depletion regions �nðrÞ ¼ 0.
Therein Eq. (11) is replaced by �ðrÞ 	 0 [23], so that no
analog of Eq. (13) exists, making the problem analytically
intractable. In graphene, there is no constraint on the sign
of density. Instead, the conditions for validity of Eq. (12)
are �" � " and � � kF, which are typically met every-
where except small area regions near the PNJ (see below).
Yet another serendipity is that the divergence of the bare

potential is only logarithmic, cf. Eq. (8). The enables us to
compute the nonperturbative long-range response with a
logarithmic accuracy. Indeed, in view of Eq. (10), �k and
Vk are linearly related at all k, except perhaps k� 1=R.
But this ‘‘difficult’’ range of intermediate k makes an

OðL�1Þ contribution to the total ��ðrÞ. To this order in L
we can treat ��ðrÞ as a Gaussian random potential. Its
probability distribution function (PDF) is uniquely deter-

mined by the correlator �KðrÞ � h ��ð0Þ ��ðrÞi, to calculate
which we can use Eq. (10). Since �KðrÞ ’ KðrÞ for r� � 1,
this immediately leads to Eq. (5).
Next, Gaussian statistics implies ergodicity. Therefore,

the density correlation function can be written as

SðrÞ ¼
Z

dfdf0P��ðr; f; f0Þ �nðfÞ �nðf0Þ; (15)

where P�� � h�ðf� ��ð0ÞÞ�ðf0 � ��ðrÞÞi is the two-point
PDF of �� and function �nðfÞ is given by Eq. (13). Using the
standard expression [25] for P�� in terms of �K and a bit of
algebra [21], I get Eq. (3). At r � R, it simplifies to SðrÞ ’
h�i2KðrÞ, where h�i � R

dfP�ðfÞ�ðfÞ, which implies that
�0 ¼ h�i. Substituting here Eq. (14) and computing the

average over the Gaussian field �� using Eq. (5), I get �2
0 ¼

8Kð‘Þ=ð�3
@
4v4Þ. Finally, sinceKð‘Þ is given by Eq. (4), we

recover the desired Eq. (2).
It is also possible to compute the PDF Pn of �n. The

Gaussian statistics of �� combined with Eq. (13) entails

Pnð �nÞ ¼ ‘

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Lj �njp exp

�
� j �nj‘2

L

�
; j �nj‘2 � 1: (16)

Note, however, that this equation is invalid at small den-
sities, j �nj< 1=‘2, where the RTFA fails. At such �n the
divergence of Pnð �nÞ basically saturates [21]. These low-
density regions are usually found near the PNJ.
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Geometrically, the PNJ are the isolines ��ðrÞ ¼ 0 of a

surface with the ‘‘height’’ profile ��ðrÞ. The zero height is
the percolation threshold, and so all but one of the PNJ are
closed loops. These loops are characterized by a certain
fractal dimension Dh. For loops of diameter d in the range

��1 � d � R, in which ��ðrÞ surface is logarithmically
rough [Eq. (5)], we have the exact result [26] Dh ¼ 3=2,
which means that closed-loop PNJ typically have the pe-
rimeter length of

p� d3=2‘�1=2; ��1 � d � R: (17)

As d increases beyond R, the correlator KðdÞ rapidly
decays [Eq. (5)], and so Dh crosses over [26] to the usual
uncorrelated percolation exponent [25] of 7=4.

Let us now discuss electron transport. Away from the NP
where electron density n is large and homogeneous, trans-
port can be studied by means of the usual kinetic equation.
The final results for conductivity �ðnÞ and transport mean-
free path lðnÞ are [6,8,12,13]

�ðnÞ ¼ 8

�

e2

h
‘2jnj; lðnÞ ¼ 4

�3=2
‘2jnj1=2: (18)

Our goal is to compute the conductivity �NP at the NP
where n ¼ nðrÞ is inhomogeneous.

The first step is to show that we can define the conduc-
tivity ��ðrÞ and the mean-free path �lðrÞ locally. Under the
assumed condition 1=R � � & 1=‘ for typical �nðrÞ �
L=‘2 we have rlð �nÞ ��lð �nÞ & 1. Hence, function
lð �nðrÞÞ is slowly varying and Eq. (18) for the uniform
density can be used: �l ¼ lð �nÞ. In turn, the local conductiv-
ity is given by the Einstein relation ��ðrÞ ¼ e2�ðrÞv�lðrÞ=2.
To be careful one should check this zeroth order result by
calculating higher order corrections due to spatial fluc-
tuations of the collision term in the kinetic equation.
Skipping the details [21], I just announce the conclusion:
if j �nj � 1=‘2, then the fluctuations of �l�1ðrÞ are self-
averaging on the scale of lð �nÞ. In other words, corrections
to lð �nÞ are parametrically small. For simplicity, I will
ignore them together with corrections to �ðrÞ [the second
term in Eq. (14)] to obtain

��ðrÞ ’ �ð �nðrÞÞ; j �nðrÞj � 1=‘2: (19)

Problems arise at j �nj & 1=‘2 where the corrections to
Eq. (19) exceed �ð �nÞ. In the classical regime �� � e2=h,
we could have handled this by adopting a model form

��ðrÞ ¼ �0�ðrÞ; j �nj & 1=‘2; (20)

where �ðrÞ> 0 is some random function with the correla-
tion length ��1 � ‘ and the typical value of the order of
unity [27]. However, in graphene �0 � �ð1=‘2Þ ¼
ð8=�Þe2=h is so low that the very concept of local con-
ductivity is potentially jeopardized by quantum interfer-
ence and localization effects. Fortunately, Eq. (20) is saved
by the special geometry of the regions where it is intended
to be used. These regions typically form ribbons of width
x� ‘ that follow the PNJ loops. These low-conductance

‘‘ribbons’’ are connected to high-conductance ‘‘reser-
voirs’’ on both sides of the PNJ. In such a geometry the
importance of the quantum effects is controlled [30] by
the total conductance Gp across the perimeter length p of

the PNJ. For p � ‘, it is given by

Gp � �0

p

‘
� e2

h
; (21)

in which case the semiclassical model (20) is justified.
Again we have succeeded in reducing the complicated
quantum problem to a simpler classical one: finding the
macroscopic conductivity �NP of an inhomogeneous me-
dium with local conductivity given by Eqs. (19) and (20) as
a function of the local density �nðrÞ.
A rigorous upper bound on �NP is the spatially averaged

conductivity. Because of ergodicity of Gaussian fields, the
averaging can be done over �n instead. Using Eqs. (16) and
(18), I obtain:

�NP < h ��i ¼
Z

d �nPnð �nÞ ��ð �nÞ ’ ð4L=�Þe2=h: (22)

(Incidentally, this enables me to conclude that Ref. [13]
overestimates �NP in the limit � � 1.)
Now I present the argument crucial to my theory of

transport. It shows that �NP is not sensitive to the details
of the model form (20). Instead, it is determined by the
typical local conductivity, and so is not far below the up-
per bound (22). This statement should be contrasted with
other theoretical views on the subject. Since the low-
conductivity regions (20) reside at the percolation contour,
it has been suggested [1,13,31] that the transport at the NP
may be governed by percolation [25]. In that picture the
current paths are severely constrained in order to avoid
crossing the PNJ as much as possible and �NP depends on
their average transparency [31].
I show that in the model under study the closed-loop PNJ

contours are not resistive enough for the percolation effects
to develop. Indeed, the percolation approach [31] would
apply only if there existed a wide range of loop diameters
d � ‘ such that the conductance Gp of the loop perimeter

were much lower than the conductance Gd of their interior.
Suppose first that d � R for such loops. Let us show that it
leads to a contradiction. If the current avoids crossing the
perimeter, it has to flow in narrow channels of some width
w � d due to the fractal geometry of the loop. Hence,
Gd � ��intw=d � �int where �int is the typical local con-
ductivity inside the loop. To estimate the latter, I note that
from the general properties of Gaussian random fields [25]

the potential �� at a distance r from the PNJ ( �� ¼ 0) has
the variance

h ��2iPNJ ¼ Kð‘Þ � K2ðrÞ
Kð‘Þ ’ �

4

�
@v

‘

�
2
ln

�
r

‘

�
; (23)

so that the corresponding density is �n� lnðr=‘Þ=‘2. Using
r� d and Eq. (18), I get �int � �0 lnðd=‘Þ. In compari-

son, Gp � �0ðd=‘Þ3=2, cf. Eqs. (17) and (21). Hence,
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Gp � Gd, which contradicts the assumption made (the

same is true for d � R). I conclude that in the present
model the percolation-type transport is not realized.

In the absence of strong ramification of current paths
by the PNJ, I expect the numerical coefficient c in Eq. (7)
to be of the order of unity. To estimate it more accurately I
use the effective medium theory (EMT). Indeed, the EMT
is usually adequate for systems where percolation effects
are unimportant. Within the EMT, �NP is determined from
a certain nonlinear equation, the two most popular versions
of which were originally proposed in Refs. [32,33]:�

�NP

��þ ðD� 1Þ�NP

�
¼ 1

D
ðBruggemanÞ; (24)

Z 1

0

dz

ez
ln

�
exp

�
z

D
��

�NP

��
¼ 1

D
ðHoriÞ: (25)

Here D ¼ 2 is the space dimension. Equations (24) and
(25) can be viewed [33] as an approximate resummation of
the infinite diagrammatic series for the macroscopic con-
ductivity using, respectively, the self-consistent single-site
approximation and the cumulant expansion.

The averages in Eqs. (24) and (25) are dominated by
typical ��, so it suffices to use Pnð �nÞ from Eq. (16). A
straightforward numerical solution of these equations
then gives: �NPðBruggemanÞ¼0:48e2=h and �NPðHoriÞ¼
0:55e2=h. Taking the difference of the two as a measure of
their accuracy, I arrive at Eq. (7).

Finally, I briefly comment on experimental implications
of the presented theory. For simplicity, I have assumed the
dielectric constant of the medium to be the same on both
sides of graphene. It is more realistic to have graphene at
the interface of a half-space with dielectric constant �1 � 1
and a film of dielectric constant �2 � 1 and thickness D,
whose other side is covered by a metallic gate. In this
geometry � is replaced by ð�1 þ �2Þ=2 while L becomes
minð lnðR=‘Þ; lnðD=‘ÞÞ. Small � can be achieved experi-
mentally using ice [4], ethanol, and other dielectrics [34].
However, it is difficult to make L larger than L� 5, for
which Eq. (7) predicts �NP � 2:5e2=h. This is 2 to 3 times
lower than the measured [1–4] �NP. This may indicate that
in experiment the charged impurities are either not exactly
coplanar with graphene, or are correlated, or are not the
only source of disorder. The last possibility is further
corroborated by a very modest increase in mobility [34]
away from the NP upon a large in situ increase of �.
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