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Shear-induced cross-correlations of particle fluctuations perpendicular and along streamlines are

investigated experimentally and theoretically. Direct measurements of the Brownian motion of micron-

sized beads, held by optical tweezers in a shear-flow cell, show a strong time asymmetry in the cross-

correlation, which is caused by the non-normal amplification of fluctuations. Complementary measure-

ments on the single particle probability distribution substantiate this behavior and both results are

consistent with a Langevin model. In addition, a shear-induced anticorrelation between orthogonal

random displacements of two trapped and hydrodynamically interacting particles is detected, having

one or two extrema in time, depending on the positions of the particles.
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The Brownian motion of particles in fluids and their
hydrodynamic interactions are of central importance in
chemical and biological physics as well as in material
science and engineering [1–4]. However, our understand-
ing of the dynamics of particles in flows is still far from
complete. Direct observations of particles at the mesoscale
substantially contribute to our understanding of their dy-
namics. At this scale optical tweezers are a powerful
experimental technique [5] with a number of innovative
applications. They include the detection of anticorrelations
between hydrodynamically interacting Brownian particles
[6], propagation of hydrodynamic interactions [7], short-
time inertial response of viscoelastic fluids [8], two-point
microrheology [9], anomalous vibrational dispersion [10],
and particle sorting techniques [11].

Neutral colloidal particles moving relatively to each
other interact via the fluid and these hydrodynamic inter-
actions decay with the particle distance [2]. In shear flow
little is known about the dynamics of Brownian particle
motion and the hydrodynamic interaction effects in spite of
their fundamental relevance and importance in applica-
tions in microfluidics, Taylor dispersion [12], and in fluid
mixing [4,13]. In time dependent fields and in shear flow
surprising deterministic particle dynamics may be induced
by hydrodynamic interactions [14]. For polymers it is the
interplay of shear flow and fluctuations which leads already
at low Reynolds numbers, to rich dynamics [15], the so-
called molecular individualism [16], causing elastic turbu-
lence even in diluted polymer solutions [17] and spectacu-
lar mixing behavior [13].

It is the contribution ðu � rÞu to the Navier-Stokes
equation which causes interesting transient phenomena in
shear flows near the onset of turbulence [18], as well as
amplifications of fluctuations and their cross-correlations
along and perpendicular to straight streamlines [19,20]. A
cross-correlation is also expected between orthogonal
particle-fluctuations in the shear plane, because random
jumps of a particle between neighboring streamlines of

different velocity lead to a change of the particle’s velocity
and displacement along the streamlines, similar as via
fluctuations. In some parameter ranges, inertia effects
may become important [21–23]. Cross-correlations be-
tween perpendicular fluid-velocity fluctuations and per-
pendicular fluctuations of particles are expected to be
strongly asymmetric in time [19,23,24]. In dynamic
light-scattering experiments certain aspects of these
shear-induced cross-correlations were observed indirectly
[25], but a direct measurement and characterization of
related particle fluctuations is missing.
Here we investigate in a linear shear flow the fluctua-

tions of a single particle in a potential minimum and of two
hydrodynamically interacting particles trapped by two
neighboring potentials. We use a special shear-flow cell,
where one or two micron-sized beads are held at its center
by optical tweezers. The time asymmetry of shear-induced
cross-correlations were determined directly by measuring
the particle’s positional fluctuations. In addition the proba-
bility distribution of a single particle in a trap was mea-
sured, which can be also calculated in terms of a Langevin
model, similar to the correlations. Both the probability
distribution and the correlation can be fitted by using the
same value of the shear rate, which altogether gives a
consistent picture of not yet directly observed shear-
induced cross-correlations of particle fluctuations.
By a dual beam optical tweezer setup, composed of two

solid state lasers and an oil immersion objective with a
numerical aperture of 1.4, two harmonic potentials are
generated in an inverted microscope (Nikon TE 2000-S)
to capture uncharged polystyrene beads (Duke Scientific
Corporation, R0300) with a diameter of 3 �m in a flow of
distilled water. The beads were observed with a high speed
camera (IDT, X-Stream, XS-5) of 15 kHz and their posi-
tions were determined with a correlation tracking algo-
rithm with a spatial resolution of�4 nm [26]. To avoid any
interference of the two potentials at small distances and to
maximize the hydrodynamic interaction effect between the
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two particles, they where held at a distance of d ¼ 4 �m.
In a microfluidic device with two counter flows, as shown
in Fig. 1, a linear shear gradient with a vanishing mean
velocity was generated at the center of the cell, as experi-
mentally verified by micro-PIV (see inset in Fig. 1). The
design of the flow chamber was optimized by numerical
simulations of the incompressible Navier-Stokes equation
(Multiphysics 3.4, Comsol AB, Stockholm, Sweden). The
small width in x direction of the center piece of the
chamber was chosen in order to minimize flow in y direc-
tion. The curved form of the boundaries was found to
suppress vortices. The channel was manufactured by stan-
dard soft lithographic techniques and the flow was driven
by gravitational potential difference. The distance of the
beads from the wall was always larger than 10 �m in the z
direction and 25 �m in the xy plane. Hence boundary
effects on the bead fluctuations could be excluded within
our experimental resolution, as verified by measurements
without flow, which were in very good agreement with
previous results (see, e.g., Ref. [6]). However, with flow
the experimental noise becomes larger, especially at longer
correlation times. The value of the shear rate _� has been
extracted from the fits of the correlation data and by
particle tracking methods. The highest shear rate that did
not lead to an escape of the particles from the traps was
_� ’ 50 s�1 [27].
One or two Brownian particles with coordinates ri ¼

ðxi; yi; ziÞ (i ¼ 1, 2) are held in a linear shear flow uðyiÞ ¼
_�yiêx by forces fVi ¼ kðpi � riÞ close to the minima pi of
two harmonic potentials Vi ¼ k

2 ðpi � riÞ2 (spring constant

k). The overdamped particle motion is described by a
Langevin equation [2]:

_r i ¼ uðriÞ þ HijðfVj þ fSj Þ: (1)

The mobility matrix Hij accounts for the Stokes friction

and the hydrodynamic interactions between them. Here we

use the Oseen approximation

H 11 ¼ H22 ¼ 1

�
E; (2)

H 12 ¼ H21 ¼ 1

�

3a

4r12

�
Eþ r12r

T
12

r212

�
; (3)

with the Stokes friction coefficient � ¼ 6��a of a point
particle of effective hydrodynamic radius a in a fluid of
viscosity � and the unity matrix E. r12 ¼ r1 � r2 is the
bead distance and r12 is its norm, � ¼ �=k the particle
relaxation time in the potential and W ¼ _�� the
Weissenberg number. The Brownian particle motion is
driven by the stochastic forces fSi ðtÞ in Eq. (1), for which
we assume vanishing mean values and correlation times:

hfSi ðtÞi ¼ 0; (4)

hfSi ðtÞfSj ðt0Þi ¼ 2kBTH
�1
ij �ðt� t0Þ: (5)

At first we investigate the Brownian motion of a single
trapped particle in shear flow. Its autocorrelation along the

flow direction, hxð0Þxð0Þi ¼ kBT
k ð1þW2=2Þ, depends on

W, but along the perpendicular direction, hyðtÞyð0Þi ¼
kBT
k expð� t

�Þ, it does not depend on W [24]. In a quiescent

fluid cross-correlations between particle displacements in
orthogonal directions vanish: hxðtÞyðt0Þi ¼ 0. But shear
flow causes in the shear plane finite cross-correlations
[21,23,28], which are asymmetric with respect to t ! �t
[24]:

hxðtÞyð0Þi ¼ kBT

k

W

2
e�t=�

�
1þ 2

t

�

�
; (6)

hxð0ÞyðtÞi ¼ kBT

k

W

2
e�t=�: (7)

The algebraic prefactor in Eq. (6) illustrates that a fluctua-
tion yð0Þ � 0 of a particle is carried away by the flow in the
x direction before the initial displacement yð0Þ relaxes.
This leads, during an initial period shorter than the relaxa-
tion time �, to a growth of hxðtÞyð0Þi, while the expression
in Eq. (7) decays monotonically. As shown in Fig. 2, the
predicted elementary signatures for the shear-induced
cross-correlations, cf. Eq. (6), are in agreement with our
experimental data (triangles). Here hxðtÞyð0Þi takes its
maximum roughly at t � 0:009s, corresponding via
Eq. (6) to a particle’s relaxation time � � 0:018s. Also
the initial decay of hxð0ÞyðtÞi (squares in Fig. 2) agrees with
our model; cf. Eq. (7). The additionally observed minimum
is possibly caused by a slight inclination of the laser beam
or it is a reminiscent of a long wavelength oscillation due to
the limited number of samples taken [27]. For fluid veloc-
ity fluctuations in orthogonal directions in the shear plane a
similar signature as in Eq. (6) has been found [19].
According to Eq. (6) and (7) one obtains the normalized
ratios of the static cross-correlations: hxð0Þyð0Þi=
hyð0Þyð0Þi ¼ W=2 and hxð0Þyð0Þi=hxð0Þxð0Þi ¼ W=2

1þW2=2

[24]. From the fits, as indicated by the red and blue line

FIG. 1. A cell cross section (lithographic mask) is shown with
150 �m depth in the z direction having opposite flow directions
in its upper and lower channel and a linear shear profile at its
center: see inset with PIV data (�) and linear fit. One or two
particles at a distance d ¼ 4 �m were held by optical tweezers
in the center of the linear velocity profile uðyÞ.
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in Fig. 2, we obtain hxð0Þyð0Þi=hxð0Þxð0Þi � 0:26, which
corresponds to a Weissenberg number W � 0:62.

The probability distribution of a Brownian particle in a
harmonic potential and exposed to a linear shear flow has
an elliptical cross section as shown by the particle’s posi-
tion in Fig. 3 but it has circular symmetry in the absence of
flow. The angle � enclosed by the major axis of the
particle’s probability distribution and the x axis, as well
as the ratio R between the lengths of the two principal axes,
in the shear plane, depend on the Weissenberg number W
as follows [24]:

tan� ¼ 1
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þW2

p
�W�; (8)

R ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þW2
p

�Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þW2

p þW

�
1=2

: (9)

Using W � 0:62 as determined above, one obtains via
Eq. (8) the angle � � 37� and via Eq. (9) the ratio
R � 0:72. Within errors this is consistent with the angle
� � 38� and the ratio R � 0:75 obtained from the mea-
sured particle’s distribution shown in Fig. 3.

For two particles, each trapped in a potential minimum
in shear flow, we investigated the correlations between

their random displacements for two different configura-
tions: With the connection vector p12 ¼ p1 � p2 parallel to
the flow direction as in Fig. 1 or perpendicular to it.
For Brownian displacements of the two distinct particles

along the same direction the quantities hxiðtÞ; xjð0Þi and

hyiðtÞ; yjð0Þi describe anticorrelations for i � j (see, e.g.,

Ref. [6]). The shear-induced corrections for both are of the
order of W2 as described in more detail in Ref. [24]. For
random displacements of distinct particles, but along or-
thogonal directions, one only finds correlations in the
presence of shear flow. With the abbreviations

	1;3 ¼ 1� 2�; 	2;4 ¼ 1��; � ¼ 3a

4d
; (10)

and the connection vector p12 parallel to the flow two of the
anti-cross-correlations in the shear plane are [24]

hx1ðtÞy2ð0Þi ¼ kBT

�k

W

2

�
e�	2t=� þ e�	4t=� � 2	2e

�	1t=�

2þ 3�

� 2	4e
�	3t=�

2� 3�

�
; (11)

hx1ð0Þy2ðtÞi ¼ kBT

k

W

2

�
e�	2t=�

2þ 3�
� e�	4t=�

2� 3�

�
: (12)

The cross-correlation hx1ðtÞy2ð0Þi (triangles) in Fig. 4 and
the fit (blue line) show a pronounced minimum at about the
particles relaxation time t � �.
With a connection vector p12 perpendicular to the flow

lines we obtain a cross-correlation hx2ðtÞy1ð0Þ in the limit
of small values of �,

hx2ðtÞy1ð0Þi � � kBT

2k

W�

2
e�t=�

�
3þ 2

t

�
þ 6

t2

�2

�
;

which exhibits in contrast to Eq. (11) two extrema.
Shear-induced cross-correlations between random dis-

placements of a single particle in a potential were calcu-

FIG. 3 (color online). The particle’s distribution in the shear
plane is shown in a) without flow and for a shear flow with _� ¼
49 s�1 in b). The angle between the major and the x axis is � �
38� and the ratio between the two principal axes is R � 0:75.
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FIG. 4 (color). Correlations hx1ðtÞy2ð0Þi (triangles) and
hx1ð0Þy2ðtÞi (squares) between random displacements of two
particles. Colored lines are fits according to Eq. (11) and (12).
Circles represent the same correlations in the absence of flow.
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FIG. 2 (color). Shear-induced cross-correlations between or-
thogonal random displacements: hxðtÞyð0Þi (triangles) and
hxð0ÞyðtÞi (squares). Lines are fits according to Eq. (6) and (7)
and open circles represent hxð0ÞyðtÞi in the absence of flow.
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lated and measured here for the first time, to the best of our
knowledge, cf. Fig. 2. At approximately half of the parti-
cle’s relaxation time � the correlation function in Eq. (6)
exhibits with its maximum a typical signature of Brownian
motion in shear flow, caused by the rotational part of the
shear flow as well as the non-normal property of the
linearized Navier-Stokes equation. Simultaneously, for a
particle in a harmonic potential and shear flow an elliptical
probability distribution was measured. Both independent
measurements are described by a Langevin model for the
same value of the Weissenberg number, which confirms the
validity of our approach to shear-flow effects on the
Brownian particle dynamics.

Theoretically, shear-induced correlations between per-
pendicular fluid velocity fluctuations have been investi-
gated before [19,20]. Those are traced back to the non-
normal property of the linearized Navier-Stokes equation
[19] and they are important for the stability of shear flow
and the onset of turbulence. The cross-correlations be-
tween these velocity fluctuations are based on the same
mechanism as discussed here and they exhibit similar
extrema as our experimental and analytical results.

Stochastic forces on a suspended particle are caused by
velocity fluctuations of the surrounding fluid. Usually, they
are assumed to be isotropic in related Langevin models
with uncorrelated perpendicular components. However,
cross-correlations of the velocity fluctuations in shear
flow, as discussed in Refs. [19,20], will modify the cross-
correlations between orthogonal particle displacements, as
investigated here, but the related additional contributions
to the particle displacement correlations are expected to be
considerably smaller than the effects of isotropic random
forces [24]. It is, however, an interesting and challenging
future issue to separate these two nonequilibrium effects in
experiments.

For two hydrodynamically interacting particles, each
captured by an optical tweezer at the center of the shear
flow, we find shear-induced anticorrelations between or-
thogonal particle displacements with one extremum if the
vector connecting the mean particle positions is parallel to
the streamlines and two extrema, if the connection vector is
perpendicular to the flow lines. These properties may be
relevant for further understanding of the dynamics of poly-
mer models in shear flow.
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