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We study solitary wave propagation in the condensate of a system of hard-core bosons with nearest-

neighbor interactions. For this strongly repulsive system, the evolution equation for the condensate order

parameter of the system, obtained using spin-coherent state averages, is different from the usual Gross-

Pitaevskii equation (GPE). The system is found to support two kinds of solitons when there is a particle-

hole imbalance: a dark soliton that dies out as the velocity approaches the sound velocity and a new type

of soliton which brightens and persists all the way up to the sound velocity, transforming into a periodic

wave train at supersonic speed. Analogous to the GPE soliton, the energy-momentum dispersion for both

solitons is characterized by Lieb II modes.
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Strongly correlated quantum systems pose some of the
most difficult challenges at the forefront of fundamental
physics. Recent theoretical and experimental work in the
field of Bose-Einstein condensates (BECs) of atomic gases
center around unveiling new phenomena that could lead to
the understanding of various complexities of these sys-
tems. The possibility of tuning interatomic interactions
via Feshbach resonances allows one to manipulate nature
and study realistic and tractable quantum many-body mod-
els. Among the various models, a system of impenetrable
bosons, known as the hard-core boson (HCB) gas, is a
paradigm. It was analyzed exactly in one dimension by
Girardeau [1]. It has been used to study transport character-
istics of bosonic and spin-polarized fermionic atoms [2].

In this Letter, we study solitary wave propagation in a
HCB system with nearest-neighbor (NN) interactions [3]
to obtain deeper insight into beyond–Gross-Pitaevskii
equation (GPE) dynamics in quantum many-body systems.
A soliton or solitary wave is a localized nonlinear excita-
tion that travels with a constant speed, retaining its shape.
Nondispersive solitonic energy transport has been ob-
served in a BEC [4]. These are the well-known dark
solitons that travel with speeds less than that of sound.
Such particlelike transport is an active field with particular
emphasis on unveiling many-body characteristics that can-
not be described with the approximate description pro-
vided by the GPE. The existence of dark solitons has
also been shown in a one-dimensional HCB gas using
Fermi-Bose mapping [2] and in a generalized mean-field
theory where the cubic nonlinearity of the GPE was re-
placed by a quintic term [5]. Solitons in similar quintic
models were further investigated with a periodic potential
[6] and also in the presence of a dipole-dipole interaction
[7]. Additionally, various numerical investigations [8] have
analyzed the quantum dynamics of dark solitons to study

the effects of quantum fluctuations and quantum depletion
in a Bose-Hubbard model.
Our formulation, based on the equation for the BEC

order parameter obtained using spin-coherent state aver-
ages [9], differs considerably from earlier studies. In addi-
tion to not being restricted to one dimension, the evolution
equation for the order parameter contains all powers of the
condensate density. In this non-GPE-type equation, which
incorporates quantum fluctuations and depletion, both par-
ticles and holes emerge as equal partners in the transport.
In this regard, our methodology bears some parallel with
recent work [10] on weakly interacting atoms where a non-
GPE description emerges due to quantum fluctuations.
In contrast to the weakly repulsive condensate described

by the GPE which supports only a dark soliton [11], we
show that the HCB condensate supports two distinct types
of solitons: a dark soliton whose amplitude vanishes as its
propagation speed approaches the Bogoliubov speed of
sound vs (like the GPE soliton) and a new species of
soliton that exhibits brightening and persists all the way
up to vs. Hence we call this a persistent soliton. For
propagation speeds above vs, it evolves into a periodic
wave train. The existence of this novel type of soliton that
brightens the condensate profile is tied to the particle-hole
population imbalance, a key parameter for the crossover to
a non-GPE behavior.
It is instructive to start our analysis with the extended

lattice Bose-Hubbard model in d dimensions,

H ¼ �X
j;a

½tbyj bjþa þ Vnjnjþa�

þX
j

Unjðnj � 1Þ � ð�� 2tÞnj: (1)

Here, byj and bj are the creation and annihilation operators

for a boson at the lattice site j, nj is the number operator, a
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labels NN sites, t is the NN hopping parameter,U is the on-
site repulsion strength, and � is the chemical potential. To
soften the effect of strong on-site repulsion, we add an
attractive NN interaction (V > 0) (although our results will
be valid for repulsive V). Such a term may mimic certain
aspects of the long range dipole-dipole interactions that are
the subjects of various recent investigations [7]. The on-
site term 2tnj is added so that the terms with t reduce to the

kinetic energy in the continuum version of the many-body
bosonic Hamiltonian.

The HCB limit (U ! 1) of the strongly repulsive Bose-
Hubbard model corresponds to the constraint that two
bosons cannot occupy the same site. This can be incorpo-
rated in the formulation by using field operators that anti-
commute at same site but commute at different sites, thus
satisfying the same algebra as that of a spin- 12 system. The

system can be mapped to the following quantum XXZ
Hamiltonian in a magnetic field [12] by identifying bj
with the spin flip operator Sþj , along with nj ¼ 1

2 � Szj,

HS ¼ �X
j;a

½tSþj S�jþa þ VSzjS
z
jþa� �

X
j

ðUe ��ÞSzj: (2)

Here, Ue ¼ ðt� VÞd, where d is the spatial
dimensionality.

The dynamics of the HCB system (2) is described by the
Heisenberg equation of motion,

i@ _Sþj ¼ ðUe ��ÞSþj � tSzj
X
a

Sþjþa þ VSþj
X
a

Szjþa: (3)

This operator equation can be transformed into an equation
of motion for the condensate order parameter �j ¼ hSþj i
using spin-coherent state averages [9], a natural choice for
describing the inherent coherence in the condensed phase
of HCB. Parametrizing the local order parameter as �j ¼
1
2 sin�je

i�j , we obtain the condensate number density �c
j ¼

j�jj2 ¼ 1
4 sin

2�j and the particle number density �j ¼
hnji ¼ hS�j Sþj i ¼ sin2ð12�jÞ. Hence, the condensate and

particle number densities are related by

�c
j ¼ �jð1� �jÞ: (4)

Therefore, in contrast to the GPE, we now have �j 6��c
j .

Further, the resulting formulation encodes fluctuations and
depletion, as seen from the relations hS�j Sþj i � hS�j i�
hSþj i ¼ �2

j and hn2j i � hnji2 ¼ �c
j .

The Hamiltonian in Eq. (1) is invariant, up to a change in
the chemical potential, under a particle-hole transforma-
tion, where the hole operators are the Hermitian conjugates
of the boson operators and the hole density is �h

j ¼ 1� �j.

Thus the condensate density �c
j is the product of the

particle density and the hole density [from Eq. (4)], with
particles and holes playing equal roles in determining the
condensate fraction. As we now show, the particle-hole
imbalance variable �j ¼ ð1� 2�jÞ ¼ �h

j � �j plays a key

role in the dynamical evolution of the system.

The equations of motion for Sþj and Szj lead to the

following coupled equations for �j and �j:

i@ _�j ¼ ðUe ��Þ�j � t�j

X
a

�jþa þ V�j

X
a

�jþa;

i@ _�j ¼ 2t
X
a

ð�j�
�
jþa � ��

j�jþaÞ:
(5)

We now consider the continuum approximation of the
discrete equations (5), useful in the limit when the order
parameter is a smoothly varying function with a length
scale greater than the lattice spacing a. In the limit where
the number of particles N and the number of lattice sites L
tend to infinity, with the filling factor N=L fixed, the
system is described by the condensate order parameter

�ðrÞ ¼ 1
2 sin�ðrÞei�ðrÞ, which is coupled to the particle-

hole imbalance variable �ðrÞ ¼ cos�ðrÞ:

i@ _� ¼ � @
2

2m
�r2�þ Ve

2
�r2�þ 1

2
Ueð1� �Þ����;

(6)

_� ¼ @

2m
r � ½ð1� �2Þr��; (7)

where ta2 ¼ @
2=ð2mÞ and Ve ¼ Va2.

In the small-� limit where we neglect terms involving
j�j2n� (n > 1) and retain only linear terms involving the
derivatives of �, both the order parameter equation (6) and
the continuity equation (7) reduce to the GPE form, with an
effective mean-field interaction equal to Ue. In the above
equations, if we set ð1� �Þ ¼ 2� and use Eq. (4), we can
show that for �ðrÞ< 1

2 , the GPE limit is obtained when

�c � �; i.e., the order parameter corresponds to the con-
densate of particles, while for �ðrÞ> 1

2 , the GPE is satis-

fied by the order parameter for the condensate of holes,
namely ��, with �c � �h.
The Bogoliubov spectrum associated with the small

amplitude modes of the HCB system is similar to the
GPE [9] case and determines the Bogoliubov sound veloc-

ity vs ¼ ðUe�
c=mÞ1=2. However, as we discuss below, for

the propagation of nonlinear localized modes, true GPE-
type transport emerges only near half-filling, and the cross-
over to non-GPE dynamics is controlled by the particle-
hole imbalance.
We now investigate unidirectional soliton propagation in

the HCB system, described by Eqs. (6) and (7). To this end,
we look for traveling wave solutions for � with velocity v,
of the form �ðzÞ ¼ �0 þ fðzÞ, where z ¼ ðx� vtÞ=a and
�0 denotes a uniform background density. The correspond-
ing background particle-hole imbalance is �0 ¼
ð1� 2�0Þ. The function fðzÞ is then found to satisfy the
nonlinear equation

4

�
df

d�z

�
2
�
1� �2

fðf� �0Þ
�c
0

�
¼ f2

�
�2 � fðf� �0Þ

�c
0

�
; (8)

where �2 ¼ 1� �v2 with �v ¼ v=vs. Further, �z ¼ �z and
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� ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
, where the microscopic parameter � ¼

vsma=@ is the Bogoliubov speed of sound vs measured in
units of the zero-point velocity @=ma.

Equation (8) is satisfied by an elliptic integral. In the
special case where the bracketed term on the left-hand side
is approximated by unity, there are two soliton solutions
f� of the form [13]

f� ¼ 2�2�c
0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 þ 4�2�c

0

q
coshðz=�Þ � �0

: (9)

Here, � ¼ 2�� is the width of the soliton. These two
special solutions are emblematic of the general solution
to Eq. (8). We have numerically integrated Eq. (8) to find
fðzÞ and compared it with the analytical solution (9). We
find close agreement between the numerical and analytical
solutions for all values of v and �0. This happens because
the neglected terms become irrelevant for small f and also

when df
dz ¼ 0, the condition which determines almost all of

the contributions to the localized modes. Figure 1 with
�0 ¼ 1=2 shows the case when the agreement is at its
worst. Away from half-filling, the numerical and analytic
solutions are very close.

The solutions (9) are valid provided Ue > 0 (or t > V)
because the functions f� are unbounded for negative Ue.
We point out that the interaction V simply scales the width
of the soliton without altering its profile.

The distinction between the twin solitons, which encode
particle-hole duality as fþðz; �0Þ ¼ f�ðz; �h

0Þ, can be elu-

cidated by computing the momentum P� ¼ m
R
J�dx.

Here, J ¼ ð@=mÞ�cr�. We get

P� ¼ �ðmvÞ
ffiffiffiffiffiffi
�0
c

p
2�

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

0 þ 2�0
c�

2Þ1=2 � �0

ð�2
0 þ 2�0

c�
2Þ1=2 	 �0

vuut : (10)

For small v, Pþ corresponds to the momentum of a particle
of positive mass while P� corresponds to the momentum
of a hole, as the effective mass is negative. This justifies
associating fþ (respectively, f�) as the solitary wave with

particles (holes). Further, ðPþ � P�Þ=mv ¼ 	�=
ffiffiffiffiffiffi
�c
0

p
,

which is suggestive of a conservation principle.
Particle-hole imbalance appears to be a key factor in

determining the characteristics of the solitary waves. As
seen in Fig. 1, when the number of particles is equal to the
number of holes, the two solutions for the particle density
�ðzÞ are dark and antidark [14] solitons (bright solitons on
a pedestal) which are mirror images of each other. In the
corresponding condensate density �cðzÞ, the solutions are
indistinguishable, resulting in a single GPE-like soliton
that flattens out at the sound velocity. In fact, within the
approximations discussed above, Eq. (8) expressed in
terms of the condensate density �cðzÞ is identical to a

GPE with healing length 
 renormalized to 1
2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p
.

In other words, when the background consists of equal
numbers of particles and holes, the soliton solution for
the condensate density of the HCB is like the usual soliton
of the GPE but with a renormalized healing length.
When the number of particles differs from the number of

holes, the condensate soliton corresponding to the solution
f� is dark and flattens out at the sound velocity. However,
the condensate soliton corresponding to the solution fþ
brightens the condensate profile, as shown in Fig. 2. As v
increases, the spatial extent of the disturbance above the
background increases, and the solitary wave �cðzÞ becomes
completely bright at the speed of sound. More important,
this soliton does not flatten out but persists even at the

FIG. 1 (color online). Comparison of numerical [solid line
(black)] and analytical [dashed line (red online)] solitary wave
solutions for �0 ¼ 0:5. The upper and lower panels correspond
to �v ¼ 0, � ¼ 1 and �v ¼ 0:87, � ¼ 0:5, respectively. The plots
with crosses (blue online) show the corresponding condensate
density �c.

FIG. 2 (color online). Solitary wave for �0 ¼ 0:25 for total
particle density (a), (b) and condensate density (c), (d) for �v ¼ 0
(a), (c) and �v ¼ 1 (b), (d). Solid (dotted) plots correspond to fþ
(f�) solitons.
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sound velocity. The survival or persistence of the soliton of
this sector is evident from the limiting functional form [15]
of fþ as �v ! 1. We find �þ ! �0 þ �0=ð1þ Cz2Þ, where
C ¼ 4�2�0=�

c
0 and hence the width of the soliton becomes

independent of its speed of propagation. It should be noted
that as �0 ! 0, the solutions approach a definite limit with
C equal to 8Ue in units of zero-point energy ð@=aÞ2=m. In
other words, the antidark solitons become bright solitons,
reminiscent of the bright solitons discussed in systems with
attractive dipole-dipole interaction [7]. Another distinctive
feature of the persistent soliton is that it is transformed into
a periodic wave train when its velocity exceeds the sound
velocity.

Finally, we compute the energy-momentum relationship
of the solitons by integrating the equation dE=dPc ¼ v to
obtain the canonical momentum Pc, where E is the energy
[11]. The three plots in Fig. 3 show the dispersion relations
for the fþ and f� solitons and the corresponding GPE
soliton [16]. Each plot shows linear dispersion at one end
of the spectrum (at the momentum corresponding to v ¼
vs) and saturation at the other end (at the momentum
corresponding to v ¼ 0). The dark soliton has a linear
dispersion near E ¼ 0, Pc ¼ 0, with the slope given by
vs, and it saturates to zero slope near the maximum value
of the momentum. (The GPE soliton, with � ¼ �c

0, has a

similar behavior.) The persistent soliton exhibits linear
dispersion with the same slope vs near the maximum value
of the momentum. Comparing this with the exact bosonic
low-lying excitation spectrum for the HCB gas discussed
by Lieb [17], we note that both soliton branches with
bounded momentum intervals mimic the main character-
istics of his type II excitation spectrum, being linear at one
end and saturating at the other. However, it should be noted
that in the present context, it is the lower branch that can be
designated as a type II ‘‘hole’’ state. The higher energy
upper branch associated with the persistent soliton is, in
fact, a type II ‘‘particle’’ state. This is different from Lieb’s

classification, where particle states were always type I with
unbounded momentum.
In summary, we have explored solitary wave propaga-

tion in a degenerate HCB gas and have found novel fea-
tures that are not present in the conventional Gross-
Pitaevskii equation, as well as some others that are. In a
lattice system, this crossover occurs at half-filling, which
corresponds to equal numbers of particles and holes in the
HCB system. At exact half-filling, we obtain GPE-like
dark solitary waves. Away from half-filling, we find both
dark and antidark solitary waves including a persistent
variety which propagates with a nonvanishing amplitude
right up to the speed of the sound. The forms of these
solutions at t ¼ 0 represent two initial types of disturbance
profiles that could evolve into these solitons in realistic
quasi-one-dimensional systems. These aspects could be
further explored in numerical simulation in first-principle
quantum many-body calculations and may find experimen-
tal realization in a highly anisotropic cigar shaped trap. We
hope that our results will also provide further stimulus to
the study of solitons in quantum many-body systems.
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