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A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics

of degenerate systems is derived. This approximation is used to solve the long-standing problem of the

choice of the initial states of H0 leading to eigenstates of H0 þ V for degenerate systems. These initial

states are eigenstates of P0VP0, where P0 is the projection onto a degenerate eigenspace ofH0. This result

is used to give the proper definition of the Green function, the statistical Green function and the

nonequilibrium Green function of degenerate systems. The convergence of these Green functions is

established.
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Nonperturbative Green function methods, such as the
GW approximation [1] or the Bethe-Salpeter equation
[2,3], have brought remarkable progress in the calculation
of the electronic structure and dielectric response of semi-
conductors. The extension of these methods to transition
metal systems faces a serious difficulty: the standard Green
function can only be defined when the initial state j0i of the
system without interaction is a single Slater determinant. In
physical terms, each single-particle orbital or Bloch state
has to be either occupied or unoccupied at zero tempera-
ture. However, the physics of transition metals often con-
tradicts this requirement. For the example of a V3þ ion in
an octahedral environment, we do not know a priori how
the two 3d electrons are distributed over the six degenerate
t2g orbitals (with up and down spins).

More generally, for a system described by a Hamiltonian
H ¼ H0 þ V where the ground state of H0 is degenerate,
we need to determine the parent states, i.e., the initial states
of H0 that evolve into eigenstates of H by adiabatically
switching the interaction.

Degenerate systems being ubiquitous in quantum phys-
ics, this long-standing problem has been discussed in
chemical physics [4,5], nuclear physics [6,7], atomic phys-
ics [8,9], and solid state physics [10]. Esterling and Lange
[10] summarized the situation as follows: ‘‘Since H0 has
degenerate ground states, the choice of the state j0imust be
made with care, and this may be considered the key to the
problem.’’ This question is also crucial in many-body
physics because the Green function of a degenerate system
has to be defined from a parent state.

In the present Letter, we give a simple method to ex-
plicitly determine the parent states and to define the Green
function of degenerate systems. Through a nonperturbative
analysis of the evolution operator of a degenerate system,
we determine the exact form of its singularities. This
enables us to derive: (i) an easy and explicit method to

determine the parent states; (ii) a nonperturbative proof
that the Gell-Mann and Low formula generally converges
only for these parent states; (iii) the formula for the Green
function of degenerate systems; (iv) the validity of the so-
called statistical Green function; (v) the singularity struc-
ture of the nonequilibrium Green function of degenerate
systems.
Adiabatic switching.—Many-body theory [11,12] is usu-

ally based on the adiabatic switching of the interaction, i.e.,
the transformation of the time-independent Hamiltonian

H ¼ H0 þ V into the time-dependent one H0 þ e�"jtjV.
Adiabatic switching turns the nondegenerate ground state
j0i of H0 into an eigenstate j�GMLi of H first proposed by
Gell-Mann and Low [13] in 1951

j�GMLi ¼ lim
"!0

U"ð0;�1Þj0i
h0jU"ð0;�1Þj0i ; (1)

where the evolution operator U"ðt; t0Þ is the solution of

i
@U"ðt; t0Þ

@t
¼ eiH0te�"jtjVe�iH0tU"ðt; t0Þ;

with the initial condition U"ðt0; t0Þ ¼ 1. The wave function
j�GMLi is then used to build the Green function of the
system [11,12]. However, Gell-Mann and Low did not
prove that the limit of Eq. (1) exists [12]. The convergence
of j�GMLi for nondegenerate systems was first established
by Nenciu and Rasche in 1989 [14].
For a degenerate ground state j0i of H0, the Gell-Mann

and Low formula generally fails to converge when " ! 0,
as can be seen even for a trivial two-level system [15]. In
the following, we use recent advances in the mathematical
analysis of the adiabatic approximation (see [16] for a
review) to extend the Gell-Mann and Low formula to
degenerate systems.
Adiabatic approximation.—In this section, we set up the

notation and give the theorem that enables us to calculate
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the parent states and to define the Green functions. We
consider t � 0 and we rewrite the time-dependent
Hamiltonian as HðsÞ ¼ H0 þ esV, where s ¼ "t is the
so-called slow variable. The eigenvalues of HðsÞ are de-
noted by EjðsÞ and its eigenprojectors by PjðsÞ. We recall

that, if the eigenvalue EjðsÞ is nj-fold degenerate, the

eigenprojector is PjðsÞ ¼ Pnj
k¼1 j’jkðsÞih’jkðsÞj, where

fj’jkðsÞig is a set of nj orthonormal eigenstates of HðsÞ
for the eigenvalue EjðsÞ. For notational convenience, we
denote Pjð�1Þ by P0

j in the rest of the Letter. The model

space M is the vector space generated by the eigenstates
corresponding to N0 eigenvalues of H0 ¼ Hð�1Þ. Each
eigenvalue ofH0 can be degenerate and is possibly split by
the perturbation V, so that the N0 eigenvalues of H0

become N eigenvalues E1ðsÞ; . . . ; ENðsÞ of HðsÞ, with N �
N0. Each EjðsÞ can be degenerate and the eigenvalues are

allowed to cross (Fig. 1). For an octahedral V3þ ion, we
have N0 ¼ 1 with degeneracy 15, and there are N ¼ 4
interacting states: 1A1g,

1Eg,
1T2g, and

3T1g, with degener-

acy nj ¼ 1, 2, 3, and 9, respectively.

A key tool of our approach is Aðs; s0Þ, the rotating frame
operator [17,18], that relates the eigenstates at s0 and s:
Aðs; s0Þj�jkðs0Þi ¼ j�jkðsÞi, so that

Aðs; s0ÞPjðs0Þ ¼ PjðsÞAðs; s0Þ: (2)

Using standard technical assumptions [19], we recently
obtained [20] a rigorous approximation of the evolution
operator projected on each eigenspace:

U"ð0;�1ÞP0
j ’ ei�j="Að0;�1ÞP0

j ; (3)

where �j ¼ �R
0
�1½EjðsÞ � Ejð�1Þ�ds. In particular, the

divergences of the evolution operator are entirely described

by the factor ei�j=".
Construction of the parent states.—The parent states are

the eigenstates j�i of H0 such that U"ð0;�1Þj�i tends to
an eigenstate j�i of H, up to a (divergent) phase.
Therefore, the parent states are naturally defined in terms
of U"ð�1; 0Þj�i and it seems that the interacting states
j�i are needed to define the parent states [4,9,21]. We now
show that the parent states have a more simple and explicit
definition as eigenstates of P0

j and we explain how P0
j can

be calculated by standard time-independent perturbation
theory.

For notational convenience, we denote es by � and the
eigenvalues and eigenprojections are written in terms of �.
We denote by �Ejð�Þ and j �’jkð�Þi the eigenvalues and

eigenstates of H0 þ �V [so that �Ejð�Þ ¼ EjðsÞ]. They

can be expanded as [20]

�E jð�Þ ¼
X1

n¼0

�nEn
j ; j �’jkð�Þi ¼

X1

n¼0

�nj’n
jki;

with the normalization h’0
jkj �’jkð�Þi ¼ 1. The eigenstates

j �’jkð�Þi are assumed orthonormal only at � ¼ 0, where

P0
j ¼

Pnj
k¼1 j’0

jkih’0
jkj.

The time-independent Schrödinger equation

ðH0 þ �VÞj’jkð�Þi ¼ Ejð�Þj’jkð�Þi;

gives, to order 0, H0j’0
jki ¼ E0

j j’0
jki, so that j’0

jki is an

eigenstate of H0 with energy E
0
j . We assume that E0

j is one

of the N0 eigenvalues of the model space, so that j’0
jki

belongs to the model space. However, the degeneracy of E0
j

as an eigenvalue of H0 is generally larger than the degen-
eracy of Ejð�Þ and we need more information to determine

the nj states j’0
jki. The Schrödinger equation to order �

gives us ðH0 � E0
j Þj’1

jki ¼ ðE1
j � VÞj’0

jki. This equation

can only have a solution if hc 0
mjðE1

j � VÞj’0
jki ¼ 0, where

fjc 0
mig is a complete set of eigenstates of H0 with energy

E0
j . Therefore, the initial states j’0

jki are eigenstates of H0

with energy E0
j and eigenstates of PE0

j
VPE0

j
with eigen-

value E1
j , where PE0

j
is the projection onto the eigenspace

of H0 with eigenvalue E0
j . In general, the degeneracy is

split at this order, in the sense that there are only nj states

that are simultaneously eigenstates of H0 with energy E0
j

and of PE0
j
VPE0

j
with eigenvalue E1

j . Otherwise, for in-

stance when PE0
j
VPE0

j
is zero by symmetry, the equations

coming from higher powers of � must be taken into ac-
count to determine j’0

jki. In that case, the second order is

usually enough [22], but methods have been developed to
treat any order [23].
We generally have no a priori knowledge of nj and E1

j .

However, we can calculate all the eigenstates ofH0 and, for
each energy E0

j , we can diagonalize PE0
j
VPE0

j
. Then, each

state must be examined to see if it cannot be further split by
higher order terms. When degeneracy is due to the sym-
metry of the Hamiltonian HðsÞ, this can be deduced from
the dimension of the irreducible representations to which
the states belong. The computational effort required to
construct j’0

jki is small because it is an eigenvalue problem

in a vector space whose dimension is the degeneracy of E0
j ,

which is small in applications. From the states j’0
jki we

build the projector P0
j and we define a parent state as a state

j�i such that, for some j,FIG. 1. Example of allowed eigenvalue pattern.
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P0
j j�i ¼ j�i: (4)

In practice, the parent state is one of the j’0
jki.

Generalized Gell-Mann and Low wave function.—We
show that the parent states previously defined lead to
convergent Gell-Mann and Low wave functions. For a
parent state j�ji such that P0

j j�ji ¼ j�ji, Eq. (3) enables
us to write

U"ð0;�1Þj�ji ¼ U"ð0;�1ÞP0
j j�ji

’ ei�j="Að0;�1ÞP0
j j�ji

’ ei�j="Að0;�1Þj�ji:
Therefore, the following limit exists:

j�GMLi ¼ lim
"!0

U"ð0;�1Þj�ji
h�jjU"ð0;�1Þj�ji ¼

Að0;�1Þj�ji
h�jjAð0;�1Þj�ji :

(5)

The Gell-Mann and Low wave function j�GMLi is indeed
an eigenstate of H0 þ V with energy Ejð0Þ because

Pjð0Þj�GMLi ¼ j�GMLi. To show this, we use Eq. (2):

Pjð0ÞAð0;�1Þj�ji ¼ Að0;�1ÞP0
j j�ji ¼ Að0;�1Þj�ji:

In practice, we are interested in the Gell-Mann and Low
wave function that is the ground state of H0 þ V. How
should we choose the initial state j�ji for this to happen?

In the nondegenerate case, it is often assumed that the
ground state of H0 leads to the ground state of H0 þ V.
When degeneracy is due to the presence of symmetry, band
crossing can occur and one should try the j�ji correspond-
ing to the lowest energy E0

j for each irreducible represen-

tation. A typical example of band crossing in the presence
of symmetry is given by Tanabe-Sugano diagrams of the
multiplet theory [24]. For a small crystal field, the ground
state has the highest spin value (Hund’s rule), but as the
crystal-field parameter increases, a low spin state can
become the ground state.

Green functions.—The expression for the Green func-
tion is usually derived under the assumption that the
ground state of H0 is nondegenerate [11,12]. Our results
enable us to determine how this expression is extended to
the case of degenerate systems. Now we formally extend
our previous results to Fock space.

To follow the usual argument [12], we repeat the calcu-
lation by starting from a positively infinite time. In terms of

the slow variable s ¼ �"jtj, the switching function e�"jtj
is the same for positive and negative times. As a result, the
rotating frame operator is the same but the divergent phase

changes sign: U"ð0;þ1Þj�ji ’ e�i�j="Að0;�1Þj�ji.
Therefore,

lim
"!0

U"ð0;þ1Þj�ji
h�jjU"ð0;þ1Þj�ji ¼

Að0;�1Þj�ji
h�jjAð0;�1Þj�ji :

In other words, the Gell-Mann and Low wave functions

obtained from positive and negative infinite times are
equal. This nontrivial result is due to the fact that the

switching function fðtÞ ¼ e�"jtj is even.
The two-point Green function is defined by [12]

Gðx; yÞ ¼ h�GMLjOHj�GMLi
h�GMLj�GMLi ;

where x ¼ ðr; tÞ, y ¼ ðr0; t0Þ, OH ¼ Tðc HðxÞc y
HðyÞÞ is the

time-ordered product of fields in the Heisenberg picture
and j�GMLi is defined by Eq. (5). Standard manipulations
[12] transform it into

Gðx; yÞ ¼ lim
"!0

h�jjX"j�ji
h�jjU"ðþ1;�1Þj�ji ; (6)

where X" ¼ U"ðþ1; tÞc ðxÞU"ðt; t0Þc yðyÞU"ðt0;�1Þ and
X" ¼ �U"ðþ1; t0Þc yðyÞU"ðt0; tÞc ðxÞU"ðt;�1Þ if t > t0
and t < t0, respectively.
The expression for the Green function generally con-

verges only when the initial state is a parent state. Indeed,
consider a state j�i in the model space and write it as
j�i ¼ P

jj�ji, where j�ji ¼ P0
j j�i. Thus,

U"ð0;�1Þj�i ’ X

j

e�i�j="Að0;�1Þj�ji:

If there is more than one j in the sum, the phases �j are

generally different (in the absence of eigenvalue crossing,
they can be shown to be different). Therefore, the phase
factors in the numerator and denominator of Eq. (6) do not
cancel and the expression has no limit for " ! 0.
Statistical Green function.—The Green function of the

previous section has a nonambiguous meaning when j�ji
is the parent state of a nondegenerate interacting state.
However, when the interacting state itself is degenerate,
there is no reason to choose any particular parent state. To
solve that problem, Layzer [25] defined the statistical
Green function as an equal-weight average over the degen-
erate states. Such a statistical Green function was advo-
cated, for instance, by Alon and Cederbaum [26]. The
statistical Green function can preserve the symmetry of
the system: in the example of a spherically symmetric
Hamiltonian, the Green function obtained from any state
j‘mi with ‘ � 0 gives nonspherically symmetric charge
density, whereas the statistical Green function obtained
from the mixed state

P
mj‘mið2‘þ 1Þ�1h‘mj gives a

spherical charge density [27]. We are now able to prove
that the statistical Green function has a well-defined limit
when " ! 0.
To define the statistical Green function of a degenerate

interacting system with energy Ejð0Þ, we use the density

matrix � ¼ ð1=njÞ
Pnj

k¼1 j’0
jkih’0

jkj, where the states j’0
jki

are those used to calculate P0
j . We assume that the degen-

eracy of Ejð0Þ is nj. Then,

Gðx; yÞ ¼ lim
"!0

Trð�X"Þ
Tr½�U"ðþ1;�1Þ� : (7)
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If we put j�ji ¼ j’0
jki in Eq. (6), the divergences of the

numerator and denominator are e2i�j=", which does not
depend on k. Therefore, the divergent phases of the nu-
merator and denominator of Eq. (7) are equal, and the
statistical Green function is well defined. For our octahe-
dralV3þ ion, the Green function is defined with the density
matrix built from the nine degenerate states with 3T1g

symmetry if the ion is high spin.
Nonequilibrium Green function.—In the study of non-

equilibrium systems, it is often convenient to run the
evolution operator over a closed time path instead of taking
the limit t ! þ1. In this so-called Keldysh approach, the
Green functionGðx; yÞ is calculated by a formula involving
no denominator [28]: it is the limit for " ! 0 of G" ¼
h�jU"ð�1; 0ÞOHU"ð0;�1Þj�i. As for the standard
Green function, this expression generally converges for
degenerate systems only when j�i is a parent state. To
see this, we expand again a state of the model space over
parent states: j�i ¼ P

jj�ji. Then,
G " ’ X

ij

eið�j��iÞ="h�ijAð�1; 0ÞOHAð0;�1Þj�ji:

This expression converges for " ! 0 when there is a single
phase, i.e., when j�i is a parent state. Otherwise, the limit
generally does not exist. The statistical nonequilibrium
Green function is defined by using � and a trace.

Conclusion.—The determination of the parent states and
the proof of convergence break the last deadlocks in the
determination of the Green function of degenerate systems.
The main difference with the nondegenerate case is the fact
that, for many degenerate systems, the parent state is not a
single Slater determinant. To see this, consider a
Hamiltonian where H0 is the restricted Hartree-Fock
Hamiltonian of a 3dn transition metal ion and V is the
sum of the remaining atomic Coulomb interaction and of
an effective potential representing the influence of the
surrounding atoms. Then, the parent states are exactly the
eigenstates of the crystal-field Hamiltonian and they are
generally not single Slater determinants. In that case, the
structure of the Green function is more complex because of
the so-called initial correlations [29] coming from the
matrix elements between the different Slater determinants.
Perturbative [29] and nonperturbative [30] methods have
been developed to tackle initial correlations. Finally, our
approach also gives a nonperturbative proof of the con-
vergence of the effective Hamiltonian [31].
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