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We show that a generalized connectedness percolation theory can be made tractable for a large class of

anisotropic particle mixtures that potentially contain an infinite number of components. By applying our

methodology to carbon-nanotube composites, we explain the huge variations found in the onset of

electrical conduction in terms of a percolation threshold that turns out to be sensitive to polydispersity in

particle length and diameter. The theory also allows us to model the influence of the presence of

nonconductive species in the mixture, such as is the case for single-walled nanotubes, showing that these

raise the percolation threshold proportionally to their abundance.
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The exceptional thermal, mechanical, and electrical
properties of carbon allotropes like nanotubes and gra-
phene sheets, and the wide variety of potential applications
of nanocomposites containing these allotropes, have gen-
erated a considerable interest in the buildup of networks by
these highly anisometric particles [1,2]. Once formed in
fluid precursor phases, such networks are capable of sig-
nificantly improving the physical properties of the host
material post solidification, but only if the networks are
system spanning and if the nanofillers are connected in a
sense that may be different for different physical properties
of interest [3]. For instance, to significantly increase the
electrical conductivity of the composite requires neighbor-
ing particles in the network to be within a short enough
range of each other to enable charge-carrier transport
between them. Connectedness can then be defined by
some maximum surface-to-surface distance. Given this
range, the quantity of interest is the (geometrical) perco-
lation threshold (PT), which is the minimum filler packing
fraction necessary to establish a network that spans the
entire system [3].

Despite a large body of theoretical literature on the PTof
highly anisometric filler particles, predicted to scale as the
reciprocal of their aspect ratio [4,5] and found to approach
values below 10�3 for carbon nanotubes (CNTs) [6] and
graphene [2], little is known, let alone understood, about
the influence of polydispersity in length and/or breadth, or
the presence of a fraction of poorly conducting species [4].
Indeed, single-walled carbon nanotubes (SWNTs) consist
of about one third metallic and two thirds semiconducting
particles, while multiwalled carbon nanotubes (MWNTs)
and graphene sheets are generally conductive. Both carbon
allotropes can have quite a broad length and width distri-
bution, and in fact it is quite a challenge to remove all
bundles (stacks) even after significant processing [6]. Be-
cause of the connection between percolation phenomena
and phase transitions, known to be influenced very strongly
by polydispersity effects [7], we expect the PT to also be

greatly affected by them. As we shall see, this expectation
turns out to be justified theoretically, explaining the varia-
tion of several orders of magnitude observed in PTs of
CNTs of approximately the same mean aspect ratio [8].
In this Letter, we make analytically tractable a general-

ized connectedness percolation theory of mixtures of steri-
cally interacting particles. Specifically allowing for
polydispersity in the linear dimensions of the particles
and the way they are connected, we derive an expression
for the mean cluster size from the pair-connectedness
analog of the multicomponent Ornstein-Zernike equation
of liquid-state theory [9], presuming the network builds up
in the fluid stages of the production process of the nano-
composite. Provided the particles interact through a
harshly repulsive potential and their size greatly exceeds
the characteristic hopping or tunneling distance, the
second-virial approximation represents an accurate closure
for this equation. We apply the theory to CNTs and obtain
an analytical expression for the PTat which the cluster size
diverges. Although translation-rotation coupling gives rise
to angular correlations between the CNTs, the PT that we
obtain is a function only of higher-order moments of the
full distribution of dimensions and connectivity ranges.
This explains why the PT is so sensitive to the degree of
size polydispersity. Likewise, there is a sensitivity of the
PT to polydispersity in the extent of connectivity, which
may be taken as a model for variations in nanofiller con-
ductivities. In bidisperse mixtures of conductive and non-
conductive CNTs, we find the PT to scale with the inverse
fraction of the conductive species: the nonconductive ones
act as dead mass.
To calculate from connectedness percolation theory [9]

the PT of anisometric filler particles, i.e., the volume
fraction for which the average cluster size of connected
particles diverges, let xi�y denote the number fraction of

particles that can be described by an arbitrary length Li,
width D�, and height Hy. Here, and in the following, we

use indices with Roman symbols to denote length polydis-
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persity, Greek ones to denote variations in width, and the
symbols y, z, and x to indicate different heights. The
weight-average number of particles in a cluster S is the
sum of the weight-average ‘‘partial cluster sizes’’ Sp �
Sij��yz that obey

Sp ¼ xi�y�ij����yz þ lim
q!0

�xi�yxj�zhP̂ij��yziu;u0 (1)

and can be computed from the so-called pair-
connectedness function, Pij��yz. Here, �ij is the

Kronecker delta, � the number density of the particles in
the system, u � ðu1;u2Þ with u1 and u2 the unit vectors in
the direction of the main axes of a particle, and h. . .iun

�

ð4�Þ�1
R
dunð. . .Þ, n ¼ 1; 2 an orientational average. (A

similar prescription holds for the primed variables.) The
hat ð ^. . .Þ � R

drð. . .Þ expðiq � rÞ indicates a spatial Fourier

transform with q the wave vector, so P̂ij��yz ¼
P̂ij��yzðq;u;u0Þ is the Fourier transform of

Pij��yzðr; r0;u;u0Þ. This pair-connectedness function is

defined such that �2Pðr; r0;u;u0Þdrdr0=ð4�Þ2 equals the
probability of simultaneously finding a rod in a volume
element dr at position r and a second rod in dr0 at r0, given
that the particles are part of the same cluster [9].

P̂ij��yz obeys the pair-connectedness analog of the

multicomponent Ornstein-Zernike equation [9],

P̂ij��yzðq;u;u0Þ ¼ Ĉþ
ij��yzðq;u;u0Þ þ �

ð4�Þ2
X

k;�;x
xk�x

Z
du00Ĉþ

ik��yxðq;u;u00ÞP̂kj��xzðq;u00;u0Þ; (2)

with Cþ the direct pair-connectedness function that probes
short-range correlations, to be determined later on.
Because the cluster size obeys S � P

pSp with p �
fi; j; �; �;y;zg, we conclude from Eq. (1) that we require
information only on the average of P̂ over its four orienta-
tions and six indices. Therefore, we need not find the
individual components of P̂ij��yz, and the key to solving
Eq. (2) is to take averages over j, �, z, and u0. We thus
obtain an equation that gives this average of P̂ in terms of
an operator that works on the same average of Ĉþ. We
substitute this in Eq. (1), which then gives an expression
for the average cluster size S ¼ hTk�xðuÞik�x;u in terms of
the function Tk�xðuÞ that depends on the indices and
orientation of a single particle rather than two. It obeys
the reduced integral equation

Tk�xðuÞ � �hĈþ
km��xyð0;u;u0ÞTm�yðu0Þim�y;u0 ¼ 1; (3)

where h. . .im�y � P
m;�;yxm�yð. . .Þ. Again, we need not

solve T explicitly but only averages of T over its indices
and argument, simplifying the calculation considerably.
Obviously, this can only be done with an appropriate
closure as Cþ is not known a priori.

However, as to be argued below, the second-virial ap-
proximation, in whichCþ is replaced by the connectedness
Mayer function [9], should be an accurate closure for
harshly repulsive particles if the hopping range is suffi-
ciently small on the scale of the largest particle dimension.
In practice, this is probably always the case, i.e., it holds
for CNT rods and graphene sheets alike.

We now focus on the application of our theory to CNTs,
for which the mean length is typically 3 to 4 orders of
magnitude larger than any reasonable estimate for the
hopping distance, which at most is in the nanometer
range. We assume cylindrical symmetry of the particles
so they can be described by a length, a diameter, and a
single orientation vector denoted u or u0 henceforth.

Within the second-virial approximation, Ĉþ
ij��ð0;u;u0Þ �

f̂þij��ð0;u;u0Þ � R
drfþij��ðr;u;u0Þ [4,9], with fþij�� �

expð��uþij��Þ the connectedness Mayer function of par-

ticles that belong to the same cluster and interact via
the connectedness potential uþij��ðr;u;u0Þ; ��1 ¼ kBT,

with kB the Boltzmann’s constant and T the absolute
temperature.
We now specify the connectedness potential uþ that by

definition is infinite for all configurations in which the rods
are not connected. Although our aim is to model particles
that interact via a harshly repulsive excluded-volume in-
teraction, we use a form that interpolates between these
and ideal ones that can freely interpenetrate (see Fig. 1). In
this description, uþ ¼ " for distances r � D��, with " !
1 for impenetrable rods and " ¼ 0 for ideal ones and
where D�� � 1

2 ðD� þD�Þ is their average diameter.

Furthermore, uþ ¼ 0 for D�� � r � ��� in the overlap

or connectedness zone and uþ ! 1 for r � ��� outside

of it. The length ��� is the range beyond which charge

transport is negligible and is a for our purposes adjustable

FIG. 1 (color online). (a) Two nanotubes with orientations u
and u0, lengths Li and Lj, and diametersD� andD� separated by

a distance r between their center lines and skewed at an angle �.
Charge transport between the rods requires r to be smaller than
Dþ � ¼ �: the dashed cylinders of diameter � enclosing the
rods must overlap. (b) The connectedness potential uþ between
two particles in the same cluster versus their distance r for ideal
(" ¼ 0) and hard particles (" ! 1).
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parameter [10]. In practice, the nanotubes in conducting
networks do not actually touch each other, confirming the
connectedness criterion to be a valid concept [6]; our
model extends the so-called ‘‘cherry-pit’’ model from

spherical to rodlike particles [11]. To compute f̂þ, it is
convenient to make use of Straley’s oblique coordinate
system [12] and tentatively presume additivity of charge-
carrier hopping distances, so ��� ¼ ð�� þ��Þ=2. (We

explicitly study nonadditivity effects below.) This gives to
leading order for slender rods [13]

f̂ þ
ij��ð0;u;u0Þ ¼ 2LiLjð��� �Deff

��Þj sin�j; (4)

with �ðu;u0Þ the angle between two rods with orientations
u and u0 and with Deff

�� � D��½1� expð��"Þ� an effec-

tive diameter, so that Deff
�� ¼ D�� for hard and Deff

�� ¼ 0

for ideal rods (see also Fig. 1).
Returning to Eq. (3) for the cluster size S, we insert

Eq. (4) for Ĉþ, average over u, and use that hj sin�jiu ¼
�=4 for an isotropic distribution of the orientations [13].
Averaging the resulting integral equation over the variables
k and � produces an expression for S and two of its higher
moments. To solve for S, we take the average also after
multiplying the integral equation with Lk and ð�� �
Deff

� ÞLk, respectively. The solution of the set of equations

gives an expression for S that diverges at the PT if the rod
volume fraction 	p ¼ �

4 �hLkD
2
�ik� obeys

	p ¼ hLkD
2
�ik�

hL2
k�

eff
� ik� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL2

kikhL2
kð�eff

� Þ2ik�
q ; (5)

with �eff
� � �� �Deff

� . This is our central result for rod

dispersions. It can be rationalized, in part, by presuming
that percolation takes place if there is about one rod per
average contact volume [14], here equal to hL2

k�
eff
� ik��=2.

This reproduces Eq. (5) apart from the second term in the
denominator which, according to our simple argument,
becomes hL2

k�
eff
� ik� due to the neglect of translation-

rotation coupling between the rods.
Equation (5) holds for arbitrary length and diameter

distributions that may or may not factorize. If we presume
the distributions to be independent for lack of experimental
evidence otherwise, then 	p is inversely proportional to

hL2
kik=hLkik ¼ hLiw, i.e., the weight average of the distri-

bution of rod lengths. This implies that increasing the
length polydispersity lowers the PT for a fixed average
length, because longer rods contribute more to the expand-
ing network than shorter ones do and more strongly for a
larger length difference. This is a very considerable effect
as is illustrated in Fig. 2. A reciprocal weight-average
length dependence of the PT was also found for systems
of interpenetrable sticks [14]. For hard rods with Deff

� ¼
D�, we obtain for the case of monodisperse rod widths, i.e.,

D� ¼ D and �� ¼ �, 	p ¼ D2=2hLiwð��DÞ, in agree-

ment with earlier work based on a formal mapping of the

cluster size to the osmotic compressibility of the rod fluid
[10]. For ideal particles with Deff

� ¼ 0, the PT in the

monodisperse limit reduces to 	p ¼ D2=2�L ¼ D=2L,

where by convention we put � ¼ D [10]. This is also
consistent with earlier findings based on geometric argu-
ments [4,15] and with computer simulations [16].
Before discussing the impact of a distribution of widths,

we note that the ansatz �uþ ¼ ðr�DÞ=� for distances
r > D more accurately mimics an electron-tunneling
probability that decays exponentially with a decay length

�. However, this leaves f̂þ invariant, implying that our
model takes this effect into account with � ¼ �� �D�

acting as the characteristic tunneling distance. It seems
reasonable to presume that � depends only weakly on the
dimensions of the CNTs. If true, we deduce from Eq. (5)
that 	p � hD2

�i�=2�hLiw: the presence of wider rods

raises the PT (see also Fig. 2). A similar conclusion can
be drawn from the monodisperse result 	p ¼ D2=2L� if

we would set D ¼ hD�i� [14], except that the effect is

stronger because 	p / hD2
�i� ¼ hD�i2� þ VarðD�Þ. This

makes the PT proportional to an additional term 1þ
VarðD�Þ=hD�i2� that in practice remains close to unity,

however; for both SWNTs and MWNTs, we estimate it
to be in the range from 1.0 to 1.2 [17]. As shown in Fig. 2,
the combined effect of length and width polydispersity
gives rise to a highly nontrivial dependence of the PT on
the prevalence of the various species.

FIG. 2 (color online). The percolation threshold 	p as a func-
tion of the number fractions xL of long rods and xD of thin rods
in a tetradisperse mixture of long, short (Llong and Lshort), thick,

and thin rods (Dthick and Dthin) for various values of n �
Llong=Lshort, which we take equal to Dthick=Dthin. A constant

tunneling length � is assumed. Top to bottom: n ¼ 2, 4, 8, and
16. Inset: cross section for constant 	pðxL; xDÞ=	pð0; 0Þ ¼ 0:25

(0.15) for the solid (dashed) lines showing the nonlinear behavior
of 	p. Pairs of lines from top right to bottom left: n ¼ 2, 4, 8,

and 16.
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In Eq. (5), we presume that all CNTs are conductive, i.e.,
can contribute to the percolating network and that connec-
tivity is an additive property, implying ���¼ð��þ
��Þ=2. If the nanocomposite also contains nonconductive

particles, then the additivity assumption breaks down be-
cause charge carriers only move between pairs of conduc-
tive particles and transport is blocked if one or both are
nonconductive. It turns out that we can quite easily amend
Eq. (5) to model the idealized case of a mixture of con-
ductive and nonconductive rods of equal breadth by insist-
ing that ��� ¼ Dþ � for a pair of conductive rods and

��� ¼ D for any other pair. If ��� ¼ D, the rods need to

touch for charge transport to take place, which statistically
happens with zero probability. Of course, CNTs are not
perfect insulators and in fact exhibit semiconducting be-
havior [1], but for our purposes this idealized model will
do.

For a binary mixture of conductive and nonconductive
rods of respective number fractions x and 1� x, we find
that the size of a cluster of conductive particles diverges at
a packing fraction 	p � D2=2x�hLiw � 1=x. Hence, if,

say, one third of the CNTs is conductive, then the PT is 3
times higher than would have been if all of them had been
conductive. It does indeed seem sensible, then, to select for
high fractions of conductive CNTs if as low as possible a
PT is required for the envisaged nanocomposite application
[6]. Our prediction that the percolation threshold is gov-
erned solely by the concentration of conductive nanotubes,
i.e., x	, might appear counterintuitive because one would
expect that if only contacts between conductive rods con-
tribute to the network, the presence of small numbers of
insulating ones should raise the PT disproportionately. The
reasoning is that the presence of a single insulating nano-
tube in it potentially takes out at least one complete con-
ductive path in a system-spanning network. On the other
hand, if this nanotube sits in a dead branch its impact is
zero, and it is likely this effect that provides the
compensation.

In fact, our prediction can be understood at a more
quantitative level by considering the simplified case of
percolation on a Bethe lattice. This connected cycle-free
tree, sprouting z branches per lattice site, can straightfor-
wardly be shown to have a conductivity threshold, defined
here in terms of the fraction of sites occupied, of 	c

p ¼
1=xðz� 1Þ, if a fraction x of these particles contributes to
the charge transport [3]. We conclude that the absence of
loop correlations between particles on a Bethe lattice and
ones in free space within the second-virial approximation
causes the PT to scale as 1=x.

We now turn to the important issue of the validity of this
second-virial approximation. For hard monodisperse rods
with connectedness range �, three-body cluster integrals
[4] can only raise the PT by a relative amount of the order
of the ratio of the third and the square of the second
connectedness coefficients. This ratio is proportional to
�=L, so, as long as the rod length L is large on the scale

of the hopping distance �, we can ignore three-body cor-
rections. In fact, all higher nth order terms drop out, too,
because their contribution scales as ð�=LÞn�2. In practice,
L=� 	 1 is true for almost all rods in the distribution,
where we note that the PT is anyway dominated by the
longest ones in the distribution. Similar arguments should
also hold for spherical and platelike particles, such as
graphene, where L now denotes the largest linear
dimension.
In summary, we reduced an unwieldy multicomponent

continuum percolation theory to a compact, tractable form
for a large class of particles with variable dimensions and
degrees of connectivity. The analytical expression that we
derive for the percolation threshold of rodlike particles is a
nontrivial function of the composition of lengths, widths,
and connectivities, yet it depends only on a few higher
moments of the full distribution. This generalizes earlier
findings for the geometrically much simpler spherical par-
ticles [18] and explains the large variations observed in the
PT of carbon nanotubes. Finally, our calculations confirm
that enriching the fraction of conductive single-walled
carbon nanotubes in the nanocomposite is sensible because
the PT depends quite sensitively on that fraction.
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