
Monte Carlo Test of the Classical Theory for Heterogeneous Nucleation Barriers

David Winter, Peter Virnau,* and K. Binder

Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Staudinger Weg 7, Germany
(Received 30 June 2009; revised manuscript received 5 October 2009; published 24 November 2009)

Flat walls facilitate the condensation of a supersaturated vapor: classical theory of heterogeneous

nucleation predicts that the free energy barrier �F�
het, which needs to be overcome for the formation of

sphere-cap-shaped nucleation seeds, is smaller than the barrier �F�
hom for spherical droplets in the bulk by

a factor 0< fð�Þ< 1, which only depends on the contact angle �. In this Letter, we compute both �F�
hom

and �F�
het from Monte Carlo simulations and test the theory for the lattice gas model (for which � can be

readily controlled). Even though the theory is only based on macroscopic arguments, it is shown to hold

for experimentally relevant nanoscopic nucleation seeds (20 � �F�
hom=kBT � 200) if (independently

estimated) line tension effects are considered.
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Nucleation [1–5] is a ubiquitous process which governs
such diverse phenomena as the formation of raindrops or
snowflakes in the atmosphere, the crystallization of pro-
teins, and even the formation of industrially relevant poly-
mer foams. Even though considerable empirical
knowledge has been gathered, e.g., on which materials
are suited as seed particles for making clouds rain [6] or
as nucleation agents to start precipitation in metallurgy [7],
many questions remain. The reasons for this partial short-
coming are manifold: experiments are very difficult to
control. Homogeneous nucleation in the bulk needs to be
separated from heterogeneous nucleation at walls or im-
purities, and small changes in parameters typically lead
to large changes in corresponding nucleation rates.
Nucleation sites often only consist of a few hundred or
thousand atoms and can only be observed indirectly.
Unfortunately, theoretical progress is also hampered by
these difficulties. Simulations, on the other hand, offer
full control and are, at least in principle, able to bridge
the gap between theory and experiment and, indeed, sig-
nificant progress has been achieved in recent years [8–10].

According to classical nucleation theory [1,2], the for-
mation of a (spherical) nucleation seed in the bulk is
understood in terms of two competing factors: a volume
term which seeks to expand the seed and an opposing
surface term Fs ¼ 4�R2�:

�FðRÞ ¼ ���ð�l � �vÞ 4�R
3

3
þ 4�R2�: (1)

R is the radius of the droplet (or bubble), � the interfacial
tension (of a macroscopically flat interface), �� ¼ ��
�coex the difference in chemical potential relative to the
coexistence value, and �l;v the densities of the coexisting

phases. The free energy barrier �F� can now be obtained
by determining the maximum of Eq. (1) at R�.
Interestingly, at R� we also obtain

�F� ¼ 1
3FsðR�Þ: (2)

Hence, the nucleation barrier can directly be inferred from
the knowledge of the surface free energy of a droplet or
bubble. Note that the spontaneous formation of a critical
nucleus of the new phase in the bulk requires a free energy
barrier �F�

hom of the order 20 � �F�
hom=kBT � 200.

Compared to thermal fluctuations (that one can easily
detect, e.g., by scattering experiments), this is a rare event.
The presence of a wall facilitates nucleation and reduces

the barrier. For macroscopic droplets (see Fig. 1), the
contact angle � between the droplet and the wall is given
by the competition of the vapor-liquid (�v‘), wall-vapor
(�wv), and wall-liquid (�w‘) interface free energies [11],

�v‘ cos� ¼ �wv � �w‘; (3)

for incomplete wetting conditions (�v‘ > �wv � �w‘)
[12]. Equation (3) is known as Young’s equation and can
be derived by considering the forces acting at the three
phase boundary. For small droplets, a correction due to the
line tension (�) of the contact line arises [13] (which has
the length 2�r, where r ¼ R sin�).
Considering Eq. (3) and the geometry of the sphere cap

(see the caption of Fig. 1), we obtain Turnbull’s estimate
for the surface free energy [13–15]:

Fs;het ¼ Fs;homfð�Þ;
fð�Þ ¼ ð1� cos�Þ2ð2þ cos�Þ=4: (4)

Intriguingly, fð�Þ ¼ Vsphere cap=Vdroplet. Therefore, Eq. (2)

also holds for the heterogeneous case and we get:

�Fhet ¼ �Fhomfð�Þ: (5)

The nucleation barrier in the heterogeneous case is simply
reduced by a factor of fð�Þ. Note that this derivation is
solely based on macroscopic considerations and has, to our
knowledge, never actually been tested. In this Letter, we
will demonstrate with Monte Carlo simulations of an Ising
lattice gas model that this formula can be applied to nano-
scopic systems if line tension effects are considered. This
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provides a stringent test for both the classical theory of
homogeneous and heterogeneous nucleation. For this pur-
pose, we propose a new method [16,17] to measure surface
free energies (and hence nucleation barriers) of liquid
droplets in the bulk and of droplets attached to walls over
the experimentally relevant range. No ‘‘atomistic’’ identi-
fication of which particles belong to the droplet and which
to the vapor is required. No bias potential to stabilize
droplets of a particular size [8] is needed, and fluctuations
of the droplet are not constrained. We independently de-
termine the droplet volume and the chemical potential that
characterizes the (stable) equilibrium between the small
droplet and surrounding vapor in the finite system and
derive an expression for the line tension.

We test Turnbull’s formula (5) with Monte Carlo simu-
lations of the standard nearest neighbor (Ising) lattice gas
model on the simple cubic lattice:H ¼ �J

P
SiSj, Si;j ¼

�1. Phase coexistence between saturated vapor at density
�v and liquid �‘ occurs at a (known) chemical potential
�coex. [In magnetic notation, the magnetic fieldH ¼ ð��
�coexÞ=2, and �‘, �v are related to the spontaneous mag-
netization mcoex as �v ¼ ð1�mcoexÞ=2, �‘ ¼ ð1þ
mcoexÞ=2.] Bulk systems are studied in cubic simulation
boxes with periodic boundary conditions in all directions.
For the heterogeneous case, we choose an L� L�D
geometry with periodic boundary conditions in the x and
y directions. Surface fields H1 and HD ¼ �H1 act on (the
first layer of) the two free L� L surfaces. The temperature
is set to kBT=J ¼ 3:0 to stay away from the bulk critical
temperature (at kBT=J � 4:51) and above the roughening
transition temperature [18] (at kBT=J � 2:45). Hence, the
correlation length � is less than a lattice spacing and the
interface free energy does (to a good approximation) not
depend on the interface orientation.
Wetting for the Ising model has been thoroughly studied

before [19], and by varying the surface field H1 we can
control the contact angle (Fig. 2). Note that the local sur-
face layer magnetization m1 ¼ �½@fsðT;H;H1Þ=@H1�T;H
[20] (fs is the surface excess free energy per spin). With
fsðT;H ! 0�; H1Þ ¼ �wv, fsðT;H ! 0þ; H1Þ ¼ �w‘,
and Young’s Eq. (3), we obtain � from thermodynamic
integration

cos� ¼ ð1=�v‘Þ
Z H1

0
ðmD �m1ÞdH0

1: (6)

Here, we exploit the Ising symmetry fsðT;H ! 0�; H1Þ ¼
fsðT;H ! 0þ;�H1Þ to use the local magnetization mD at
the other surface at which HD ¼ �H1 acts. �v‘ ¼ 0:434
was given by the very accurate estimates of Hasenbusch
and Pinn [21].
In the following, we describe how to obtain the surface

free energy as a function of the droplet radius. First, we
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FIG. 2. Contact angle � as derived from Eq. (6) plotted versus
H1=J at kBT=J ¼ 3:0 for two lattice sizes (full and broken
curves). Symbols show the prediction if the estimates for �
from our analysis of the droplet excess free energies and r ¼ 5
are considered (see below).

(a)

(b)

FIG. 1. (a) Schematic drawing of the system which we use to
study stable wall-attached droplets in thermal equilibrium. The
sphere-cap-shaped droplet has height h and covers a circle of
radius r at the wall, with r ¼ R sin�, h ¼ Rð1� cos�Þ. R
denotes the radius of curvature and � the contact angle. For R<
1, the density �0

v of the vapor which coexists with the liquid
droplet (at the same chemical potential �>�coex) exceeds �v

(Gibbs-Thomson effect [13,14]). (b) Typical snapshot picture of
a lattice gas system at kBT=J ¼ 3:0, � ¼ 0:065, L ¼ D ¼ 40
(measured in units of the lattice spacing), and H1=J ¼ 0 (� ¼
90�). Occupied lattice sites are highlighted by dots.
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measure the chemical potential (in the canonical ensemble)
as a function of density (Fig. 3) by applying an adaptation
[16,17] of theWidom test particle insertion method [22]. In
the flat region of the isotherm depicted in Fig. 3, a single
droplet is present in the simulation box, which will be used
for the determination of the surface free energy. At small
densities, the ascending branch of � represents pure vapor
(with no single large droplet being present), and the sub-
sequent rapid decrease signifies the system size dependent
transition towards a single droplet phase [23–26]. At larger
densities, the droplet region is delimited by a transition
towards a cylindrical droplet which is stabilized by the
boundary conditions. Note that for each system size, only a
certain range of droplet sizes can be stabilized and we have
to simulate a whole range of box sizes to cover all radii.

As indicated in Fig. 3 for each droplet state at density �,
there exists one vapor state at �0

v and one liquid state at �0
l

which have the same chemical potential. Equilibrium con-
ditions require that the chemical potential is constant
throughout the box. Therefore, the droplet has density �0

l

and is surrounded by an environment with density �0
v. The

surface free energy of the droplet is simply given by the
difference in free energy between the droplet and the vapor
state and can be determined by thermodynamic integration:

Fsð�Þ ¼
Z �

�0
v

�ð�0Þd�0: (7)

The number of particles in the box is conserved:

�0
vðV � VdropÞ þ �0

lVdrop ¼ �V: (8)

If we further require that the (average) droplet is spherical
in the bulk and sphere cap shaped for the heterogeneous
case, Vdrop becomes 4=3�R3 or 4=3�R3fð�Þ, respectively,
and we obtain Rð�Þ and finally FsðRÞ and FsðR; �Þ.

Figure 4(a) highlights the main results of our study. For
the bulk we can directly test the classical theory of homo-
geneous nucleation by comparing our simulation results
for FsðRÞ with the capillary approximation Fc;bulkðRÞ ¼
4�R2�v‘ [16,26] (�v‘ being the interfacial tension for a
flat interface.) For R ¼ 5 the difference between the theo-
retical estimate and our simulation results is already less

than 5% (at kBT=J ¼ 3:0) and quickly vanishes with in-
creasing droplet radius. The validity of the capillarity
approximation for the bulk agrees with conclusions drawn
from surface force measurements on liquid bridges [27] but
contrasts a large body of other work (see [26] for a
discussion).
We have also determined the surface free energy for a

sphere-cap-shaped droplet attached to the wall for several
contact angles as a function of the radius of curvature. It is
important to note that within statistical errors different
choices of L and D yield identical results. For � ¼ 90�
and � ¼ 58:2�, we have also included the theoretical esti-
mate from the capillarity approximation Fc;het ¼
Fc;bulkfð�Þ. When we consider Fc;hetðR; �Þ � FsðR; �Þ, we
find that the difference increases linearly with R and hence
can be interpreted as a line tension contribution, 2�r�; i.e.,
Eq. (4) is modified to Fs;het ¼ Fs;homfð�Þ þ 2�r�. This
division of surface and line contributions relies on our
droplet definition, Eq. (8), which uses the fact that for the
lattice gas the Tolman length [3–5] is zero. Figure 4(b)

FIG. 3 (color online). Chemical potential as a function of
density. The density of the sphere-cap-shaped droplet at overall
density � is given by �0

l and the density of the environment by

�0
v. �Fs is obtained by integrating the chemical potential over

the density from �0
v to �.
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FIG. 4. (a) Plot of FsðR; �Þ=kBT versus R for kBT=J ¼ 3:0 and
a broad range of values for �. Dotted lines are results for L ¼
D ¼ 30, dashed lines for D ¼ L ¼ 40, and dash-dotted lines for
L ¼ 60, D ¼ 20. For the systems [bulk, H1=J ¼ 0 and H1=J ¼
0:4 (� � 58�)] the classical predictions 4�R2�v‘ and
4�R2�v‘fð�Þ are included (full curves). (b) Plot of � versus �
for kBT=J ¼ 3:0. Crosses are data for D ¼ L ¼ 30, circles for
D ¼ L ¼ 40, diamonds for D ¼ 10, L ¼ 60, and squares for
D ¼ 10, R ¼ 80.
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shows a plot of the line tension � obtained in this way
versus contact angle. The line tension is negative and
becomes very small (and presumably vanishes) as � ! 0.
The estimates for � have been used (together with the
appropriate estimates for R) in Fig. 2 to show the expected
deviation of the contact angle for small droplets from the
bulk value. An independent check of the line tension is
obtained for � ¼ 90� by investigating slab configurations
(Fig. 5) with varying D. In this case, the potential can be
written as G=ð2DLkBTÞ ¼ �lv þ 2�=D, and the slope in
Fig. 5 agrees with the estimate shown in Fig. 4(b). Hence,
Eqs. (4) and (5) hold if a correction due to line tension is
considered. Interestingly, an experimental hint for the need
of a negative line tension describing bubble formation in
water extrusion from mesopores was given in [28].

In summary, we have shown that the classical theory of
heterogeneous nucleation at flat walls, which predicts a
reduction of the free energy barrier by a factor fð�Þ, can
describe the actual surface free energies FsðR; �Þ, provided
a line tension term is included into the latter. While the
importance of line tension effects on small nuclei has been
stressed in various other contexts, e.g., [9,29,30], the
present Letter is the first approach that provides a system-
atic method to obtain both FsðRÞ for spherical droplets in
the bulk and FsðR; �Þ for wall-attached droplets, as well as
for the contact angle � and line tension �. Thus, for the first
time we verify Turnbull’s equation from 1950, which still
stands as one of the cornerstones of the theory of hetero-
geneous nucleation. The methods, which in this Letter are
described for the simple Ising model, can readily be gen-
eralized to various models in broad classes of systems.
They will enable significant progress in the understanding

of nucleation phenomena in diverse branches of physics.
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Capillary and Wetting Phenomena: Drops, Bubbles,
Pearls, Waves (Springer, Berlin, 2004).

[13] R. D. Gretz, J. Chem. Phys. 45, 3160 (1966).
[14] D. Turnbull, J. Chem. Phys. 18, 198 (1950); J. Appl. Phys.

21, 1022 (1950).
[15] G. Navascues and P. Taranzona, J. Chem. Phys. 75, 2441

(1981).
[16] D. Winter, P. Virnau, and K. Binder (to be published).
[17] D. Winter, Diplomarbeit thesis, Johannes Gutenberg-

Universität Mainz, 2009 (unpublished).
[18] K. K. Mon, S. Wansleben, D. P. Landau, and K. Binder,

Phys. Rev. B 39, 7089 (1989).
[19] K. Binder and D. P. Landau, Phys. Rev. B 37, 1745 (1988);

K. Binder, D. P. Landau, and S. Wansleben, Phys. Rev. B
40, 6971 (1989).

[20] K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461
(1972).

[21] M. Hasenbusch and K. Pinn, Physica (Amsterdam) 192A,
342 (1993); 203A, 189 (1994).

[22] B. Widom, J. Chem. Phys. 39, 2808 (1963).
[23] M. Biskup, L. Chayes, and R. Kotecky, Europhys. Lett. 60,

21 (2002).
[24] K. Binder, Physica (Amsterdam) 319A, 99 (2003).
[25] L. G. MacDowell, P. Virnau, M. Müller, and K. Binder,

J. Chem. Phys. 120, 5293 (2004).
[26] M. Schrader, P. Virnau, and K. Binder, Phys. Rev. E 79,

061104 (2009).
[27] J. Crassous, E. Charlaix, and J. L. Loubet, Europhys. Lett.

28, 37 (1994).
[28] B. Lefevre, A. Saugey, and J. L. Barrat et al., J. Chem.

Phys. 120, 4927 (2004).
[29] A. Milchev and K. Binder, J. Chem. Phys. 114, 8610

(2001).
[30] S. Mechkov, G. Oshanin, M. Rauscher, M. Brinkmann,

A.M. Cazabtat, and S. Dietrich, Europhys. Lett. 80,
66 002 (2007).

FIG. 5 (color online). Plot of the thermodynamic potential G
for slab configurations (inset), normalized by temperature and
total surface area 2LD, versus 2=D so that the slope yields the
line tension (�=kBT ¼ 0:26� 0:001). The intercept of the ordi-
nate was fixed to the literature value of the interface tension
0.434 [21].

PRL 103, 225703 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 NOVEMBER 2009

225703-4


