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Turbulence of magnetohydrodynamic waves in nature and in the laboratory is generally cross-helical or

nonbalanced, in that the energies of Alfvén waves moving in opposite directions along the guide magnetic

field are unequal. Based on high-resolution numerical simulations it is proposed that such turbulence

spontaneously generates a condensate of the residual energy Ev � Eb at small field-parallel wave

numbers. As a result, the energy spectra of Alfvén waves are generally not scale invariant in an inertial

interval of limited extent. In the limit of an infinite Reynolds number, the universality is asymptotically

restored at large wave numbers, and both spectra attain the scaling EðkÞ / k�2
? . The generation of a

condensate is apparently related to the breakdown of mirror symmetry in nonbalanced turbulence.

DOI: 10.1103/PhysRevLett.103.225001 PACS numbers: 52.35.Ra, 47.27.E�, 96.50.Tf

Introduction.—Magnetohydrodynamic (MHD) turbu-
lence naturally occurs in a variety of plasmas, ranging
from the interstellar medium to the solar wind to laboratory
fusion devices. When the compressibility effects can be
neglected, the MHD equations take an especially simple
form in the so-called Elsässer variables,�

@

@t
� vA � r

�
z� þ ðz� � rÞz� ¼ �rPþ f�; (1)

where z� ¼ v� b, v is the fluctuating plasma velocity, b
is the fluctuating magnetic field normalized by

ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
,

vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
is the Alfvén velocity associated with the

uniform background magnetic field B0, P ¼ ðp=�0 þ
b2=2Þ includes the plasma pressure p and the magnetic
pressure, �0 is the constant plasma density, f� represents
the mechanisms driving turbulence, and small dissipation
due to viscosity and resistivity is neglected. In the absence
of dissipation, both energies Eþ ¼ hjzþj2i and E� ¼
hjz�j2i are conserved, which is equivalent to the conserva-
tion of total energy and cross-helicity [1].

The linear terms ðvA � rÞz� describe advection of
Alfvén wave packets along the guide field, while the non-
linear interaction terms, ðz� � rÞz�, are responsible for
energy redistribution over scales. Depending on the driving
force, turbulence can be either weak or strong in a certain
range of scales. Denote b� as the rms magnetic fluctuations
at the field-perpendicular scale � / 1=k?, and assume that
the typical field-parallel wave vector of such fluctuations is
kk. Then the turbulence is weak when the linear terms

dominate, kkvA � k?b�, and it is strong otherwise.

Weak MHD turbulence may play a role in laboratory
devices, in the solar wind, in the solar corona, in planetary
magnetospheres, and in the interstellar medium, as indi-
cated by energy spectra somewhat steeper that the
Kolmogorov one [1–4]. For a general driving force weak
MHD turbulence is typically observed at large scales in the
inertial interval, while at small scales turbulence eventually
becomes strong. Weak MHD turbulence admits a fuller
analytical treatment compared to strong turbulence, thus

providing a test bed for fundamental ideas in the theory of
MHD turbulence, such as scale invariant fluxes of con-
served quantities, Kolmogorov-like spectra, locality, an-
isotropy of turbulence; see [5,6].
When the nonlinear interaction is absent, the solution of

(1) is an ensemble of shear-Alfvén and pseudo-Alfvén
waves propagating along the guide field B0 with the veloc-
ities�vA. The small nonlinear terms then can be taken into
account perturbatively, and the spectrum of turbulence can
be derived using the general methods of the theory of weak
turbulence.
Spectra of MHD turbulence were first studied by

Iroshnikov [7] and Kraichnan [8]. Those early works real-
ized the role of the guide field in mediating the turbulent
cascade; however, they assumed the small-scale fluctua-
tions to be isotropic. Over the years, the assumption of
isotropy proved to be incorrect (e.g., [1,9]). Anisotropic
spectra of weak MHD turbulence were addressed by Ng
and Bhattacharjee [10] and Goldreich and Sridhar [11]
based on dimensional arguments, and a comprehensive
analytic framework was developed by Galtier et al. [12].
The latter theory derives the kinetic equations for evolution
of the spectral energies e�ðkÞ ¼ hjz�ðkÞj2i, and has the
following main results.
First, the spectral energies are transferred in the direc-

tion of large k?, and the universal regime of weak turbu-
lence is established at k? � kk. In the universal regime,

the dynamics are dominated by shear-Alfvén waves. We
shall therefore consider only shear-Alfvén waves and keep
the same notation e�ðkÞ for their energies. It is also
customary to use the phase-space-volume compensated
spectra, E�ðkÞ ¼ e�ðkÞ2�k?. Second, the predicted spec-
tra are not unique, but form a one-parameter family,
E�ðk?Þ / k�2��

? . The solutions with � � 0 correspond

to unequal fluxes of the E� energies over scales; we denote
these fluxes �þ and ��. The spectral parameter � is then
uniquely defined once the flux ratio �þ=�� is specified. In
the balanced case, �þ ¼ ��, the energy spectrum is
E�ðk?Þ / k�2

? [10–13].
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MHD turbulence in nature and in the laboratory is often
driven by localized sources (e.g., solar wind, antennas,
localized instabilities) and therefore it is generally non-
balanced. Nonbalanced turbulence possesses nonzero
cross-helicity,

R
v � bd3x � 0; therefore, it is also called

‘‘cross-helical.’’ Nonbalanced MHD turbulence has re-
cently attracted considerable interest [14–20].

In the present Letter we study weak nonbalanced MHD
turbulence in a series of high-resolution numerical simu-
lations. The results reveal puzzling contradictions with the
theory. While in the balanced case the numerics confirm
the analytic prediction Eðk?Þ / k�2

? (cf. [2,13]), in a gen-

eral nonbalanced case simulations disagree with the theory.
When we drive turbulence with unequal rates ��, the
resulting spectra E� turn out to be not defined by the ratio
�þ=��. Rather, they depend on the Reynolds number and
approach k�2

? at large k? as the Reynolds number

increases.
To resolve this contradiction, we propose that driven

weak MHD turbulence generates the residual energy con-
densate hzþðkÞ � z�ð�kÞi ¼ v2 � b2 � 0 at kk ¼ 0. This
condensate has been assumed to be zero in the standard
derivation [10–12]; therefore, its presence in our model
requires an explanation. The Alfvén wave fluctuations
obey v ¼ �b, in which case the residual energy vanishes.
However, at kk ¼ 0 fluctuations are not waves, and the

Alfvénic condition should not be necessarily satisfied. We
further propose that the generation of the condensate is a
consequence of the breakdown of the mirror symmetry in
nonbalanced turbulence.

Kinetic equations for weak MHD turbulence.—In this
section we discuss the predictions of the standard model
for weak MHD turbulence developed in [10–12,17]. The
kinetic equations for the evolution of the shear-Alfvén
energies, derived by Galtier et al. [12], have the form

@te
�ðkÞ¼

Z
Mk;pqe

�ðqÞ½e�ðpÞ�e�ðkÞ��ðqkÞdk;pq; (2)

where we use the shorthand notation Mk;pq ¼ ð�=vAÞ�
ðk? � q?Þ2ðk? � p?Þ2=ðk2?p2

?q
2
?Þ and dk;pq ¼

�ðk� p� qÞd3pd3q. The derivation assumes that in the
zeroth-order approximation, only the correlation functions
e�ðkÞ are nonzero. As shown in [12], the system (2) has a
degeneracy: the right-hand side integrals vanish for any
solutions of the form

e�ðkÞ ¼ g�ðkkÞk�3��
? ; (3)

with arbitrary functions g�ðkkÞ that are smooth at kk ¼ 0,
and�1<�< 1. The degeneracy is removed by matching
these solutions with the boundary conditions, that is, forc-
ing and dissipation (e.g., [17]). To match with the forcing,
one notes that different energy spectra correspond to differ-
ent energy fluxes, �� supplied by the large-scale forcing,
such that � is uniquely found if the ratio �þ=�� is speci-
fied. One can show that the solution with the steeper
spectrum corresponds to the larger energy flux [12].

The large-scale boundary conditions fix the slopes of the
energy spectra, but do not fix their amplitudes. To fully
remove the degeneracy, one further argues that at the
dissipation scale the balance should be restored, that is,
eþðkÞ should converge to e�ðkÞ. This ‘‘pinning’’ effect was
first pointed out in [21], and its physics was discussed in
greater detail in [12,17,18]. The pinning effect is indeed
observed in our simulations presented below.
According to the above picture, if the rates of energy

supply are fixed, then the slopes of the energy spectra e�ðkÞ
are fixed as well. If the dissipation scale is now changed,
the amplitudes of the spectra should change as to maintain
the specified slopes, and to make them converge at the
dissipation scale. This conclusion, although consistent
with Eqs. (2), seems to be at odds with the common
intuition about turbulent systems, which suggests that
small-scale dissipation should not significantly affect the
large-scale fields subject to the same large-scale driving.
This seeming contradiction motivated our interest in the
problem.
Numerical method and results.—The universal proper-

ties of MHD turbulence with a strong guide field can be
described by neglecting the field-parallel components of
the fluctuating fields, associated with the pseudo-Alfvén
mode [13,22]. By setting z�k ¼ 0 in Eq. (1) we obtain the

closed system of equations

�
@

@t
�vA �rk

�
z�þðz� �r?Þz�¼�r?Pþf�?þ�r2z�;

(4)

in which dissipation terms have been added, and we as-
sume that viscosity is equal to resistivity in Alfvénic
dimensionless units. These equations are known as the
reduced MHD model originally developed for tokamak
plasmas [23,24], and used in numerical simulations of
various regimes of MHD turbulence. Depending on the
spectral properties of the driving force, this system can
describe either weak or strong MHD turbulence [13,22].
We employ a fully dealiased Fourier pseudospectral

method to solve Eqs. (4) with a strong guide field
(vA=vrms � 5) in a rectangular periodic box, with field-
perpendicular cross section L2

? ¼ ð2�Þ2 and field-parallel

box size Lk ¼ 5L?. The choice of a rectangular box, as

discussed in [13], allows for correct description of long-
wavelength and low-frequency fluctuations.
The z� waves are driven independently by Gaussian

random forces f�?, with the variances �� ¼ hðf�?Þ2i. The
imbalance is measured by the parameter 	 ¼ ð�þ �
��Þ=ð�þ þ ��Þ. To ensure that the turbulence is weak,
the forces have a broad kk spectrum. They are applied in

Fourier space at wave numbers 1 	 k? 	 2 and
ð2�=LkÞ 	 kk 	 16ð2�=LkÞ. The Fourier coefficients in-

side that range are independent Gaussian random numbers
with the amplitudes chosen so that the resulting rms ve-
locity fluctuations are of order unity. The individual ran-
dom values are refreshed independently for each mode on
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average every 
 ¼ 0:05L?=vrms. We define the Reynolds
number as Re ¼ ðL?=2�Þvrms=�. A typical run covers
from 50 to 100 crossing times at the largest scale.

As the force renovation time is much shorter than the
inverse Alfvén frequencies of all the excited modes, the
forcing supplies energies at controlled rates, �� ¼ 1

2�
�.

According to the solution of (2), in this case the þ and �
energy slopes should be independent of the dissipation.
The results of our numerical simulations are presented in
Fig. 1. They demonstrate that the spectra are pinned at the
dissipation scale. However, the amplitudes of the spectra at
large scales are not sensitive to the dissipation. As a result,
the spectral slopes change with the Reynolds number, as to
gradually approach the balanced spectrum Eðk?Þ / k�2

? at

large k?. These numerical findings agree with the physical
expectation that large-scale fields are determined solely by
the large-scale forcing and are independent of the small-
scale dissipation. They, however, contradict the standard
model (2). In what follows we propose a resolution for this
inconsistency.

A model for nonbalanced weak MHD turbulence.—To
derive the model equations, we propose that nonbalanced
MHD turbulence leads to the generation of a nonzero
average,

hzþðkÞ � z�ðk0Þi ¼ �ðkþ k0Þe0ðk?Þ�ðkkÞ; (5)

where�ðkkÞ is concentrated at kk ¼ 0. If the Elsasser fields
zþ and z� corresponded to Alfvén waves, such an average
would be zero, since Alfvénic fluctuations satisfy v ¼ �b.
However, fluctuations at kk ¼ 0 are not waves (! ¼
kkvA ¼ 0), and the average (5) may not vanish. The pres-

ence of the condensate (5) means that the magnetic and
kinetic energies are not in equipartition at kk ¼ 0.

Physically, nonbalanced MHD turbulence is not mirror
invariant, as it possesses nonzero cross-helicity,

Rðv �
bÞd3x � 0. Non-mirror-invariant turbulence can generate
large-scale helical magnetic fields that are not in equipar-
tition with the velocity field. In the presence of a uniform
guide field, the magnetic helicity of fluctuations is not
conserved, rather, it is generated by the integral

R½zþ �
z��kd3x, e.g., [12]. In our case of weak MHD turbulence,

the magnetic field of the condensate is generated by the
kk ¼ 0 component of the same term ½zþ � z��k. Based on
this analogy, we propose that the condensate is a conse-
quence of mirror-invariance breaking in nonbalanced
MHD turbulence. Such a condensate is indeed observed
in our numerics, see Fig. 2.
The dynamics of the condensate are not described by the

weak turbulence theory, but require additional assump-
tions. It is worth pointing out that the same limitation holds
for the original system (2). As is seen from (2), only the
e�ðqk ¼ 0Þ modes are responsible for the energy transfer.

However, if one applies Eq. (2) to these modes themselves,
one encounters an inconsistency. The weak turbulence
approximation is valid when the inverse time of nonlinear
interaction is much smaller than the wave frequency. The
nonlinear interaction described by the right-hand side of
(2) does not vanish for kk ¼ 0, while the linear frequency
of the corresponding Alfvén waves, ! ¼ kkvA, vanishes.

Therefore, as noted in [12], an additional assumption of
smoothness of the functions g�ðkkÞ at kk ¼ 0was essential
for deriving the spectra (3).
We postpone the discussion of self-consistent conden-

sate equations for future communications. Here we dem-
onstrate the effect that the presence of condensate provides
on the turbulence spectra. As we have argued, the conden-
sate is expected to alter the cascade dynamics in the non-
balanced case. Consider the case where the imbalance is
weak, that is 	 
 1. In this case we expect that the
condensate is weak as well. We derive the equations for
the energies e�ðkÞ, by proceeding along the lines of weak
turbulence derivation: we expand the MHD Eqs. (1) up to
the second order in the nonlinear terms, and split the forth-
order correlators into the second-order ones according to
the Gaussian rule. To the first order in e0ðk?Þ, the resulting
equations have the form

@te
�ðkÞ¼

Z
Mk;pqe

�ðqÞ½e�ðpÞ�e�ðkÞ��ðqkÞdk;pq

þ ~�ðkkÞ
Z
Rk;pq½e�ðk?Þe0ðq?Þ

þe�ðq?Þe0ðk?Þ�d?k;pq; (6)

FIG. 1. Left panel: The spectra of balanced weak MHD turbulence, k? is measured in units of 2�=L?. The solid line is Eþðk?Þ, the
dashed line is E�ðk?Þ; Re ¼ 6000, resolution 10242 � 256 points. Right panel: The spectra of nonbalanced weak MHD turbulence,
with the imbalance parameter 	 ¼ 0:17. The solid lines denote Eþðk?Þ and E�ðk?Þ, Re ¼ 4500, resolution 10242 � 256 points. The
dashed lines show the same fields for Re ¼ 2000 and resolution 5122 � 256 points. The inset shows the corresponding energy
dissipation rates.
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where ~�ðkkÞ ¼ Re�ðkkÞ, Rk;pq ¼ ð�=vAÞðk? � q?Þ2 �
ðk? � p?Þðk? � q?Þ=ðk2?p2

?q
2
?Þ, and d?k;pq ¼ �ðk? �

p? � q?Þd2p?d2q?. The first term in (6) coincides with
Eq. (2), while the second term describes the interaction
with the condensate. It can be directly verified that each of
the integrals in (6) conserves the Elsasser energies E� ¼R
e�ðkÞd3k.
For the stationary solution, each of the integrals in (6)

should vanish independently. Equating the first integral to
zero does not allow one to find the spectra uniquely, rather,
it leads to the one-parameter family of solutions (3).
Consider the second integral that describes the interaction
of e� with the condensate. By employing the standard
methods of the weak turbulence theory, one can demon-
strate that the power-law solution nullifying the first part of
the second integral is unique, e0ðk?Þ / k�3

? . Analogously,

the second part of the second integral is zero if e�ðk?Þ /
k�3
? . We conclude that the presence of the condensate lifts

the degeneracy of the solutions: the only possible station-
ary power-law spectra of weak MHD turbulence are
e�ðk?Þ / k�3

? . Although we do not have the equation for

the condensate, the above result allows us to predict that in
order to preserve the scale invariance the condensate
should have the scaling e0ðk?Þ / k�3

? .

Conclusions.—Based on analytic consideration and nu-
merical simulations, we propose that weak MHD turbu-
lence spontaneously generates a condensate of the residual
energy Ev � Eb at small kk. We argue that the condensate

is a consequence of mirror-symmetry breakdown in non-
balanced turbulence. When the turbulence is balanced, the
energy spectra are E�ðk?Þ / k�2

? , in agreement with the

analytic prediction of [10–12]. In the balanced case the
evolution of E� fields is not affected by the condensate. In
the nonbalanced case the interaction with the condensate
becomes essential, and we propose that no universal
power-law spectra exist in an inertial interval of limited
extent. Both spectra E�ðk?Þ have the large-scale ampli-
tudes fully specified by the external forcing, and they
converge at the dissipation scale. As the dissipation scale
decreases, the spectral scalings (but not necessary ampli-

tudes) approach each other at large k?. As a result, the
universal scaling k�2

? is recovered for both spectra E�ðk?Þ
asymptotically at k? ! 1.
This work was supported by the U.S. DoE Junior Faculty

Grant No. DE-FG02-07ER54932, and by the NSF Center
for Magnetic Self-Organization in Laboratory and
Astrophysical Plasmas at the U. Wisconsin-Madison.
High Performance Computing resources were provided
by the Texas Advanced Computing Center at the
U. Texas at Austin under the NSF-Teragrid Project TG-
PHY080013N.

[1] D. Biskamp, Magnetohydrodynamic Turbulence

(Cambridge University Press, Cambridge, 2003).
[2] A. Bhattacharjee and C. S. Ng, Astrophys. J. 548, 318

(2001).
[3] J. Saur, H. Politano, A. Pouquet, and W.H. Matthaeus,

Astron. Astrophys. 386, 699 (2002).
[4] A. F. Rappazzo, M. Velli, G. Einaudi, and R. B. Dahlburg,

Astrophys. J. Lett. 657, L47 (2007).
[5] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov

Spectra of Turbulence (Springer, Berlin, 1992).
[6] A. C. Newell, S. Nazarenko, and L. Biven, Physica

(Amsterdam) 152D–153D, 520 (2001).
[7] P. S. Iroshnikov, Astron. Zh. 40, 742 (1963).
[8] R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).
[9] J. V. Shebalin, W.H. Mattheaus, and D. J. Montgomery,

J. Plasma Phys. 29, 525 (1983).
[10] C. S. Ng and A. Bhattacharjee, Astrophys. J. 465, 845

(1996).
[11] P. Goldreich and S. Sridhar, Astrophys. J. 485, 680 (1997).
[12] S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet,

J. Plasma Phys. 63, 447 (2000).
[13] J. C. Perez and S. Boldyrev, Astrophys. J. 672, L61 (2008).
[14] W.H. Matthaeus, A. Pouquet, P. D. Mininni, P. Dmitruk,

and B. Breech, Phys. Rev. Lett. 100, 085003 (2008).
[15] J. C. Perez and S. Boldyrev, Phys. Rev. Lett. 102, 025003

(2009).
[16] S. Boldyrev, J. Mason, and F. Cattaneo, Astrophys. J. 699,

L39 (2009).
[17] Y. Lithwick and P. Goldreich, Astrophys. J. 582, 1220

(2003).
[18] B. D. G. Chandran, Astrophys. J. 685, 646 (2008).
[19] Y. Lithwick, P. Goldreich, and S. Sridhar, Astrophys. J.

655, 269 (2007).
[20] A. Beresnyak and A. Lazarian, Astrophys. J. 682, 1070

(2008).
[21] R. Grappin, J. Leorat, and A. Pouquet, Astron. Astrophys.

126, 51 (1983).
[22] S. Galtier and B.D.G. Chandran, Phys. Plasmas 13,

114505 (2006).
[23] B. B. Kadomtsev and O. P. Pogutse, Sov. Phys. JETP 38,

283 (1974).
[24] H. R. Strauss, Phys. Fluids 19, 134 (1976).

FIG. 2. The field-parallel spectra of the magnetic energy (solid
line) and the kinetic energy (dashed line) at the field-
perpendicular wave number k? ¼ 5; Re ¼ 2500, resolution
5122 � 256 points, kk is in units of 2�=Lk.

PRL 103, 225001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 NOVEMBER 2009

225001-4


