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We demonstrate spectrally tuned dispersive and reactive optical force in a cavity optomechanics system

that comprises a microdisk and a vibrating nanomechanical beam waveguide. The waveguide coupled to

the microdisk acts as a bosonic dissipation channel and its motion modulates the cavity’s damping rate. As

a result a reactive optical force arises in addition to the normal dispersive force. The cavity enhanced force

is not observed at zero detuning but shows asymmetric behavior with a maximum at red-detuned offset.

Such reactive cavity backaction force points to new avenues in cavity optomechanics.
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Cavity optomechanics is a rapidly advancing field that
explores the interaction of optical and mechanical degrees
of freedom in a variety of systems [1–6]. More recently,
extensive progress has been made in scaling conventional
mirror-based Fabry-Perot cavities to chip-scale planar op-
tomechanical devices [7,8]. So far the theoretical frame-
work of cavity optomechanics has mostly been derived in
the context of mirror cavities based on radiation pressure
optical force [9,10]. With the development of a new im-
plementation of optomechanical systems, however, several
issues are becoming important that previously have not
been taken into account. First, in mirror cavity systems, the
cavity decay rate was assumed to be purely an optical
property of the mirrors and fully independent of the me-
chanical motion. This scenario changes in a planar system,
in which the deformation of the optomechanical elements
also modifies the cavity decay rate. This additional opto-
mechanical coupling becomes more important when both
the optical and mechanical mode volumes are scaled down
to ð�=nÞ3 levels [7]. Second, in mirror cavity systems, the
relevant backaction force considered is the radiation pres-
sure, which only depends on the intracavity photon num-
bers; in planar structures on the other hand, phase-
dependent gradient optical force plays a dominant role
[11]. Thus, the optical backaction force should depend
both on the photon numbers and the phase of the light
waves.

Current treatment of cavity optomechanical systems
focuses on an optomechanical coupling constant gom ¼
@!0=@y, which describes the shift of the cavity resonant
frequency (!0) due to the mechanical displacement (y).
Various existing experimental systems can be well de-
scribed by this key parameter. It was recently theoretically
realized that not only the central frequency of cavity is
dispersively modified by the mechanical perturbation, but
also the cavity damping rate can be modulated by mechani-
cal motion [12]. This theory pointed out that such a dual
coupling could pave the way for a new direction of cavity
backaction cooling in which the stringent requirement of
reaching the good cavity limit is alleviated.

In this Letter, we present a novel experimental system to
demonstrate both dispersive and reactive coupling in an
optomechanical system for the first time. A high-Q micro-
disk is coupled to a free-standing waveguide (which is also
a nanomechanical resonator) to apply cavity optical forces
and provide sensitive motion readout. Instead of studying
the optomechanical backaction on the microdisk, here we
directly determine the optical force on the waveguide by
measuring its excited mechanical response. The microdisk
cavity applies two types of backaction force to the wave-
guide: a dispersive optical force stemming from the ‘‘nor-
mal’’ optomechanical coupling effect with coefficient gom
and a reactive (dissipative in [12]) backaction force, which
arises because the displacement of the waveguide also
changes the coupling strength between the waveguide
and the disk. We provide a full analysis of these two
backaction effects and find excellent agreement with our
experimental results.
We consider the microdisk-coupled waveguide shown in

Fig. 1. The interaction between propagating photons in the
single-modewaveguide and a cavity mode in the microdisk
can be described by the Hamiltonian [13–15]:

H=@ ¼ !RðyÞĉyĉþ!Mb̂
yb̂þ!L~ngðyÞ

c
ĉyinĉin

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�eðyÞ

q
ðĉyĉin � ĉyinĉÞ þH�;O þH�;M (1)

where the first three terms represent the free Hamiltonian
of the intracavity field, the mechanical resonator, and the
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FIG. 1 (color online). (a) Schematic diagram of the microdisk-
waveguide optomechanical system. (b) Scanning electron mi-
croscopy image of the fabricated device.
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propagating waveguide field, respectively. ĉyðĉÞ, b̂yðb̂Þ,
and ĉyinðĉinÞ are the corresponding creation (annihilation)

operators. L is the length of the waveguide and ~ngðyÞ ¼
1
L

R
L ngðx; yÞdx denotes the perturbed group index of the

waveguide optical mode ngðx; yÞ. The fourth term de-

scribes the transport of photons from the waveguide to
the cavity, or the ‘‘driving term.’’ �eðyÞ is the cavity-
waveguide decay (coupling) rate which is dependent on
the position of the waveguide. In systems considered pre-
viously in the literature, the driving term was thought to be
independent of displacement. This approximation, how-
ever, is only valid in very weakly coupled systems.
Nevertheless, as we elucidate later, it is an important
term and its displacement dependence can generally not
be ignored. The remaining terms in Eq. (1) describe the
intrinsic damping of the optical modes and the mechanical
modes. At a small displacement y, the Hamiltonian can be
linearized to the first order of y, yielding an optomechan-
ical coupling Hamiltonian:

Hint=@ ¼ ŷ½gomĉyĉþ komĉ
y
inĉin

þ i�om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�e

q
ðĉyĉin � ĉyinĉÞ�: (2)

Here gom ¼ @!0=@y is the dispersive coupling coefficient,
and kom ¼ ð!=cÞð@~ng=@yÞ is the perturbation of the wave-
guide mode as described in [16]. Additionally, we intro-
duce a new coupling term �om ¼ @�eðyÞ=@y to describe
the optomechanical coupling between the cavity mode and
the external waveguide mode. This coupling is of reactive
nature since its expression is imaginary, resembling the
similar coupling effects in other resonator systems [17].
Essentially we have identified a practical device system, in
which the cavity is coupled to a bosonic environment—a
single-mode waveguide channel in our case [12]. Both the
dispersive coupling and the reactive coupling coefficients
can be traced back to the evanescent overlap of the optical
modes in the microdisk and the waveguide.

The quantum dynamics of the interaction Hamiltonian
have been fully discussed by Elste et al. [12]. It was
predicted that if the reactive term is significantly large,
the quantum noises arising from these two sources of
backaction could produce destructive interference, leading
to a zero-temperature bath that allows optomechanical
cooling without requiring the cavity to be in the good
cavity limit. Although a full demonstration of ground state
cooling remains difficult to achieve and requires cryogenic
precooling, our goal here is to derive the optical force one
would expect from such a dually coupled system and
quantify the relevant coupling constants. The backaction
force can be derived from Eq. (2):

F̂ ¼ �ðd=dyÞHint

¼ gomĉ
yĉþ komĉ

y
inĉin þ i�om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�e

q
ðĉyĉin � ĉyinĉÞ:

(3)

Instead of studying the fluctuations of the relevant opera-
tors, we calculate their steady-state values to yield the
corresponding optical force. To this end, we look for the
steady-state solution of the quantum Langevin equations:

@tĉ ¼ ið!�!c � gomyÞĉ� ð�i þ �eÞĉþ
ffiffiffiffiffiffiffiffi
2�e

p
ĉin; (4)

@tp̂y ¼ �m!2
Mŷ� @gomĉ

yĉ

� i�om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�e

q
ðĉyĉin � ĉyinĉÞ � �Mp̂y; (5)

where �i is the intrinsic damping rate of the cavity, and the
Brownian noise term has been omitted. p̂y is the momen-

tum of mechanical resonator. In the above equations, the

driving term ĉyinðĉinÞ is characterized by the steady-state

average amplitude E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin=@!

p
. The stationary solution

is given by cs ¼
ffiffiffiffiffiffiffiffi
2�e

p
Ein=ð�e þ �i � ið!�!cÞÞ. Then,

the steady-state force Fs can be written as

Fs ¼ �@gomjcsj2 � i@�om

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�e

q
cinðc�s � csÞ

� komjcsj2: (6)

Therefore, the total optical force on the waveguide has
three components. The first force term is associated with
the backaction resulting from the intracavity photon energy
change,

Fcav ¼ �@gomjcsj2 ¼ �Pingom
!

2�e

�2 þ �2
; (7)

where � ¼ �e þ �i is the half linewidth of the optical
resonance and � ¼ !�!c is the cavity detuning. When
the waveguide moves towards the disk (reducing y), the
resonance frequency will decrease. Therefore we have
gom ¼ @g=@y > 0. Hence, Fcav < 0 and this attractive
force pulls the waveguide towards the microdisk. This is
radically different from the radiation pressure force in a
Fabry-Perot cavity which only pushes the mirror [18].
The second force term stems from the reactive coupling

between the waveguide and the cavity:

Freactive ¼ �Pin�om

!

2�

�2 þ �2
: (8)

When the waveguide moves toward the disk, the wave-
guide coupling rate �e will increase so �om ¼ @�e=@y <
0. Therefore, this reactive force is attractive and enhances
the aforementioned dispersive force when the cavity is red
detuned (�< 0); when the cavity is blue detuned (�> 0),
the reactive force is repulsive and partially cancels the
dispersive optical force.
The third term Fev ¼ �komPin=! constitutes a constant

gradient optical force resulting from the perturbed wave-
guide mode due to the presence of the microdisk, which is
discussed in detail elsewhere [19]. This is a broadband
background force that is independent of cavity detuning
and does not directly impact the cavity dynamics.
Thus, the total force applied to the waveguide normal-

ized to the input power is given by
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ftotal ¼ fcav þ freactive þ fev

¼ � 2

!�2

gom�e þ �om�’

1þ ’2
þ fev; (9)

where we define the normalized detuning ’ ¼ �=�.
Further, if the cavity is in the so-called ‘‘critical coupling’’
condition, meaning that the transmission extinction ratio is
maximal, �e ’ �i ’ �=2, the expression for the force can
be simplified to

ftotal ¼ � gom þ 2�om’

!�ð1þ ’2Þ þ fev: (10)

We fabricate the devices shown in Fig. 1 on silicon-on-
insulator (SOI) wafers with 220 nm thick silicon layer and
3 �m thick buried oxide layers. The microdisk resonator
has a radius of 40 �m. A freestanding waveguide (10 �m
long and 300 nm wide), released from the substrate, is
supported by two single-sided photonic crystal waveguide
structures [8]. The gap between the waveguide and the disk
is 250 nm. Light from a tunable diode laser is coupled in
and out of the waveguide via two grating couplers with
coupling efficiency of 10% each. Figure 2(a) shows the
measured transmission spectrum of the device. A number
of optical resonances can be observed, with a highest
extinction ratio of up to 30 dB and quality factor of
120 000. At the resonance with very high extinction ratio
as in Fig. 2(b), the coupling between the waveguide and the
microdisk are impedance matched and the system can be
approximated to be in the ‘‘critical coupling’’ condition.
The optical force between the microdisk and the wave-
guide is described by Eq. (10). If the intensity of the light is
modulated, the generated dynamic force will actuate the
vibrant mechanical motion of the waveguide. In a pump-
probe scheme, we use another probe light at a fixed wave-
length, properly detuned from the resonance near
1559.00 nm, to measure the waveguide’s motion [19].
The actuation light wavelength is detuned from the reso-
nance near 1564.25 nm The input optical power of both the
probe and actuation light is kept low at 20 �W (after
compensating for the loss occurring at the input coupler)
in order to avoid instability of the microdisk.

In Fig. 3, we show the measured resonance response of
the waveguide with detuning ’ ¼ �1:0, respectively. The

waveguide is excited by the optical force into in-plane
mechanical resonance with a frequency of 25.45 MHz
and quality factor of 5000. It is notable that the phase of
the response is reversed by � when the sign of ’ is
reversed. This indicates that the total force applied to the
waveguide has changed direction from attractive (’ ¼
�1:0) to repulsive (’ ¼ þ1:0), in accordance with our
theoretical analysis from Eq. (10).
Because of the curvature of the disk, the distribution of

the optical force on the beam is not uniform and has to be
considered in the calculation of the effective mass meff for
the fundamental mode, which is evaluated to be 0.6 of the
physical mass m [18]. We then can determine both the
magnitude and the direction of the optical force on the
waveguide beam when the actuation laser is set to various
detuning ’. The detailed force calibration process can be
found in our prior publications [19]. The result is shown
in Fig. 4. At large blue detuning, a repulsive gradient
optical force is applied to the waveguide, while at red
detuning, the sign of the force changes to be attractive.
Counterintuitively, the total optical force is not maximal at
zero detuning, in contrast to the radiation pressure force
commonly encountered in Fabry-Perot cavity systems.
Rather, the maximal repulsive or attractive optical force
is obtained with detuning of ’��1, respectively.
The parameters gom and �om can be found by fitting the

result in Fig. 4(b) with Eq. (10). We found that gom=2� ¼
2:0� 0:4 MHz=nm and �om=2�¼�26:6�0:5MHz=nm.
These values agree well with our numerical calcula-
tions results (gom=2� ¼ 3:0 MHz=nm and �om=2� ¼
�25 MHz=nm) and values obtained with the method sug-
gested in [18]. The static force Fev unrelated to the cavity
resonance is found to be attractive with a magnitude of
�5:2 pN=mW, consistent with measured results when the
actuation laser is tuned far away from the resonance. Thus
the force Freactive plays a dominant role in the current
device system. According to Elste et al. [12], even though
the system is not in the ‘‘good cavity limit,’’ it is possible to
cool the waveguide’s mechanical mode to its ground state
with the cavity backaction force at optimal detuning
’opt ¼ !M=2�þ gom=�om. Although direct cooling from
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FIG. 2 (color online). Transmission spectrum of the microdisk
resonator. The critically coupled mode was selected to demon-
strate the reactive optical force.
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FIG. 3 (color online). Excited resonance response in X and Y
quadrature of the waveguide resonator with detuning ’ ¼ �1:0
(a) and ’ ¼ �1:0 (b). In (c) the phase response for the two
situations is shown. A phase shift of �, indicating the change of
the direction of the optical force, is observed when the sign of
detuning is reversed.
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room temperature appears to be challenging (thermal oc-
cupation number neq ¼ kBT=@!M ¼ 250 000), with the

recent demonstration of cryogenic precooling [4–6], reac-
tive cooling will allow for backaction cooling to the ground
state under practical experimental conditions and device
parameters (precooling to 4.2 K, mechanicalQ of 2� 105,
optical Q of 5� 105 and 5 mW input optical power at blue
detuning � ¼ 100 MHz). We note that this blue-detuned
ground state cooling is a result of destructive interference
of the aforementioned two sources of quantum noises.

The identification of reactive cavity backaction is criti-
cal for the future development of strongly coupled cavity
optomechanics [20]. It points to a new direction of ground
state cooling without relying on reaching the ‘‘good cavity
limit’’ (resolved side-band regime), which is a demanding
requirement for nanoscale optomechanical systems. The
relative strength of the reactive coupling and dispersive
coupling coefficients (gom and �om) largely depends on the
size ratio of the resonator and waveguide. As long as the
waveguide can carry a mode (and thus is a bosonic chan-
nel), the reactive coupling effect can not be ignored. How-
ever, if the waveguide is narrow enough so that it cannot
carry a mode, the scenario changes to normal adiabatic
resonator systems such as recently discussed in Ref. [18].

In conclusion, we have experimentally demonstrated
spectrally tuned reactive cavity optical force in a cavity-
waveguide device, which represents a practical, open cav-
ity optomechanics system that couples to an external bo-
sonic waveguide mode. A new type of reactive cavity
backaction force is detected and quantified for the first
time. We find that the dispersive optical force only con-
stitutes a minor contribution to the total force.
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FIG. 4 (color online). The measured transmission (normal-
ized) of the optical resonance (a) and the measured total optical
force on the waveguide beam (b) versus detuning ’. The force is
attractive at negative detuning (’< 0) and becomes repulsive at
positive detuning (’> 0:4).
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