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The confined variational method is used to generate a basis of correlated Gaussians to describe the

interaction region wave function for positron scattering from the H2 molecule. The scattering length was

� �2:7a0 while the zero energy Zeff of 15.7 is compatible with experimental values. The variation of the

scattering length and Zeff with internuclear distance was surprisingly rapid due to virtual state formation at

R � 3:4a0.
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The lack of spherical symmetry makes the calculation of
electron or positron scattering from molecules an espe-
cially intractable computational problem. The nonspheri-
cal potential couples different partial waves resulting in an
enormous escalation in the size of the calculation when
compared with atomic targets. One consequence of this is
that it is difficult to identify a definitive calculation of low
energy electron or positron scattering from the simplest of
molecules, i.e., H2, even under the simplifications of the
fixed nucleus approximation.

A new approach to compute the wave function for
electron or positron scattering from small molecules is
developed. It utilizes existing computational technologies
from few-body physics that had been used to describe the
low energy scattering of simple and composite projectiles
from atoms [1–3]. The method is applied to the calculation
of positron scattering from the H2 molecule. The cross
section for positron annihilation at thermal energies was
found to be compatible with experimental values [4–6].
This is a significant achievement since the annihilation
cross section presents a stringent test to the accuracy of
the scattering wave function [7] and its successful predic-
tion solves a previously intractable problem. Our calcula-
tions also show the existence of an unexpected virtual state
at a H2 internuclear distance of R � 3:4a0.

There have been a number of calculations of low energy
eþ-H2 scattering and annihilation [7–11]. At present, all
previous calculations significantly underestimate the low
energy annihilation cross section. The most sophisticated
calculations are the Kohn variational calculations per-
formed by Armour and colleagues at the University of
Nottingham (UN) [9,11,12]. Their most recent calculations
significantly underestimate the annihilation cross section at
thermal energies.

We apply a variant of the confined variational method
(CVM) [1,2] to describe low energy positron-H2 scattering.
In the CVM, an artificial confining potential is added to the
scattering Hamiltonian thus converting the system into a

bound system. This provides a framework that permits the
wave function in the interaction region to be obtained with
bound state techniques. Of crucial importance to this ex-
ercise is the use of the stochastic variational method
(SVM) [13–15] to describe the interaction region wave
function. The SVM and variants [16] constitute a powerful
tool for studying few-body systems. The SVM uses a wave
function that is a linear combination of explicitly corre-
lated Gaussians (ECGs) which have easy to evaluate
Hamiltonian matrix elements [14,17]. Therefore it is fea-
sible to optimize the nonlinear parameters of the basis
stochastically. Application to molecular systems is easy
and ECGs have been recently used to describe the wave
functions of a number of small molecules to high accuracy
[18]. The close to zero energy scattering parameters were
extracted from the interaction region by a stabilization
technique [1] and a technique based on the energy [19].
The calculation of the interaction region wave function

proceeded in a manner that was very similar to previous
ECG based calculations on collision systems [1,3]. The
Hamiltonian for eþ-H2 scattering was

H ¼ �X2
i¼0

r2
i

2
þX2

i¼0

WCPðriÞ � 1

jr0 � r1j �
1

jr0 � r2j

þ 1

jr1 � r2j þ
1

jr0 �R=2j þ
1

jr0 þR=2j
� 1

jr1 �R=2j �
1

jr1 þR=2j �
1

jr2 �R=2j
� 1

jr2 þR=2j þ
1

R
: (1)

The positron coordinate is r0 while r1 and r2 are the
electron coordinates. The vector R=2 is the displacement
of the two protons from the midpoint of the molecular axis.
The confining potential WCPðrÞ has the form

WCPðrÞ ¼ Gðr� R0Þ2�ðr� R0Þ; (2)
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where �ðr� R0Þ is a Heaviside function and G is a small
positive number.

The first stage of the diagonalization of Eq. (1) was to
use the SVM to generate an interaction region basis of
energy optimized ECGs. The ECGs were a generalization
of those used previously in purely atomic calculations [16].
Their functional form was

�k ¼ P̂ exp

�
� 1

2

X2
i¼0

bk;ijjri � Sk;ij2
�

� exp

�
� 1

2

X1
i¼0

X2
j¼iþ1

ak;ijjri � rjj2
�
: (3)

The vector Sk;i displaces the center of the ECG for the ith
particle to a point on the internuclear axis. This ensures the
three-particle wave function is of � symmetry. The values
of ak;ij, bk;ij, and Sk;i are adjusted during the optimization

process. The operator P̂ is used to enforce �g symmetry.

Each ECG has a total of nine stochastically adjustable
parameters.

Table I lists the energy of the confined eþ-H2 system for
a succession of basis sets. These energies were generated
with the confining potential parameters G ¼ 1:55� 10�4

and R0 ¼ 18:0a0. The internuclear separation was set to
1:40a0 which is very close to the position of the minima in
the H2 potential curve.

Extracting scattering information requires embedding
the interaction region wave function into a formalism for
e�-H2 scattering. However, one of our major aims is to
demonstrate that ECG technologies make it easy to get a
good description of the eþ-H2 collision dynamics.
Accordingly, attention is focused on the very low energy
region where the outgoing wave is essentially spherical.

There are two advantages to restricting the current cal-
culation to very low energy. First, the most reliable experi-
mental information comes from traditional positron

annihilation experiments using thermal positrons that yield
annihilation cross sections at very low energies [20].
Second, the collision can be treated as s-wave scattering
and thus the molecular aspects of the asymptotic wave
function can be neglected with minimal error.
Positron annihilation cross sections are reported as Zeff ,

which is interpreted as the number of electrons available
for annihilation. The annihilation cross section and Zeff are
related by the identity

ZeffðkÞ ¼ kc3�annðkÞ
�

; (4)

where c is the speed of light. In the first Born approxima-
tion, the number of electrons available for annihilation is
equal to the number of electrons in the molecule.
The scattering length and near zero energy Zeff were

extracted from the wave function using a stabilization
technique [1]. Initially, the energy optimized interaction
region ECG basis is supplemented by a set of basis func-
tions to describe the long-range part of the eþ-H2 wave
function. The functions were

�i;out ¼ c H2ðr1; r2Þc iðr0Þ c iðr0Þ ¼ P̂exp

�
�1

2
�ir

2
0

�
:

(5)

The target wave function c H2ðr1; r2Þ is represented by a
linear combination of ECGs. A basis of dimension of 120
gave an energy of�1:174 475 54 a:u:. The H2 energy at an
internuclear separation of 1:40a0 is �1:174 475 71 a:u:
[18]. Our wave function recovers 99.996% of the correla-
tion energy of 0.040 84 hartree [21]. The c iðr0Þ are de-
signed to describe the positron at asymptotic distances. The
�j were an even tempered set given by the identity �j ¼
�1=T

j�1 with �1 ¼ 18:59 and T ¼ 1:435. A total of 36
long-range basis functions were added to the interaction
region basis.

TABLE I. The convergence of the various properties of the eþ-H2 system for the �g symmetry at R ¼ 1:4a0 as a function of the
number of ECGs N. The first number in the N column is the dimension of the inner region basis while the second entry is the
dimension of the outer region basis. The energy of lowest energy state in the confining potential is given by the EN column. The wave
number k (in a�1

0 ) is that of the lowest energy pseudostate when the entire basis was diagonalized without the confining potential. The

scattering length Ascat (in a0) and Zeff were derived from the wave function projections parallel (k) and perpendicular (?) to the
internuclear axis, and from the system energy using the soft-box radius (SB).

N EN k Ascat;k Ascat;? Ascat;SB Zeff;k Zeff;? Zeff;SB

600þ 36 �1:169 447 60 0.006 355 81 �2:52 �2:62 �2:59 14.38 14.48 14.41

800þ 36 �1:169 457 80 0.006 355 59 �2:53 �2:63 �2:61 14.66 14.75 14.68

1000þ 36 �1:169 461 86 0.006 355 51 �2:53 �2:63 �2:61 14.74 14.83 14.76

Kohn: method of models, R ¼ 1:40a0, [9] �2:2 10.3

Kohn: R ¼ 1:40a0, [11] �9:8
Kohn: method of models R � 1:448a0, [12] �13:5
Experiment, k � 0:045a�1

0 , R � 1:448a0 [4] 14.7(2)

Experiment, k � 0:045a�1
0 , R � 1:448a0 [5] 14.61(14)

Experiment, k � 0:045a�1
0 , R � 1:448a0 [6] 16.02(08)
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The Hamiltonian was then diagonalized (with the con-
fining potential omitted) with this augmented basis yield-
ing a set of positive energy pseudostates. The phase shifts
were derived by a least squares fit to the overlap of the
target and projectile wave functions with the pseudostates
[1]. The overlap function Cðr0Þ is defined as

Cðr0Þ ¼
Z

d3r1d
3r2c

H2ðr1; r2Þ�ðr0; r1; r2Þ: (6)

The overlap function depends on the distance from the
internuclear midpoint and the angle �0 from the internu-
clear axis. Least squares fits to r0Cðr0Þ over the finite
interval, r0 2 ½R1; R2�, at fixed values of �0 were made
to the asymptotic form B sinðkr0 þ �0Þ. The radial limits
for the fit were chosen as R1 ¼ 18a0 and R2 ¼ 30a0. This
procedure is reminiscent of an earlier method to determine
molecular phase shifts using discrete functions [22]. The
lowest energy pseudostate was at k � 0:006a�1

0 . The scat-

tering length was extracted from the phase shift using
Ascat � � tanð�Þ=k while Zeff is determined from the nor-
malization constant. Table I gives the scattering length and
Zeff for the lowest energy pseudostate extracted for projec-
tions parallel and perpendicular to the internuclear axis.

An alternate estimate of the scattering length was made
from the energy. The evenly tempered asymptotic positron
basis was diagonalized for a zero potential. This basis can
be regarded as defining a soft-sided box [19]. The effective
radius of this box can be estimated from the lowest energy
V ¼ 0 state, and the radius allows the scattering length and
Zeff to be determined [19]. These are designated in Table I
as Ascat;SB and Zeff;SB. The methods used to estimate the

scattering length do not take long-range polarization and
quadrupole interactions into account past r0 � 24a0.
Subsidiary calculations suggest an underestimation of
jAscatj by about 5%.

The scattering length in Table I becomes increasingly
negative as the dimension of the basis increased. This is
expected on physical grounds. Comparison between Ascat;k,
Ascat;?, and Ascat;SB and the Zeff;k;?;SB values reveals the

extent to which the low energy scattering parameters are
largely unaffected by the aspherical potential. The overall
variations between the values of Zeff and Ascat are about
1%. The calculations at this energy are equivalent to theH2

molecule being its lowest rovibrational level. It must be
kept in mind that our calculation is for a fixed axially
symmetric target, while a non-Born-Oppenheimer calcu-
lation would treat theH2 system as a spherically symmetric
system.

The UN group had previously used the method of mod-
els within the Kohn variational method to determine the
low energy Zeff . The value listed in Table I is taken from
the calculations labeled ‘‘ii’’ in Table 4 of [9]. This gave a
Zeff of 10.3. A Kohn variational calculation which explic-
itly included the H2 wave function was very recently
reported by the UN group [11]. The result given in

Table I used a H2 wave function which gave 99.7% of

the correlation energy and were taken from the �ð2;BÞ
t

curves in Figs. 7 and 8 of [11]. Some UNmethod of models
calculations presented while this Letter was under review
gave Zeff ¼ 13:5 [12]. The same article also gave a Zeff �
10 with an explicit H2 wave function and the UN group did
not make a clear statement about which result should be
preferred [12].
Calculations have also been performed at a series of

internuclear separations between 1:0a0 and 4:4a0. The
scattering length as a function of internuclear separation
is shown in Fig. 1 while the zero-energy Zeff is depicted in
Fig. 2. Zeff for the vibrational ground state was estimated
by assuming the linear form ZeffðRÞ � Z0 þ Z1R. The Zeff

for the vibrational ground state is then computed by eval-
uating Zeff at the mean internuclear distance hRi.
Computing Zeff at hRi ¼ 1:448a0 [23] gives hZeffivib ¼
15:72. The scattering length for the vibrational ground state
was estimated at �2:74a0.
Experimental Zeff values of 14.7(2) [4], 16.02(8) [6], and

14.61(14) [5] have been measured. The differences appear
to be related to variations in Zeff with gas density for
reasons that are not known [6]. The present calculation is
compatible with experiment when consideration is given to
the uncertainties in the experimental analysis. The tradi-
tional gas phase positron annihilation experiments simply
inject high energy positrons into the gas and rely on the
assumptions that the positrons are thermalized and no other
processes are occurring when the lifetime spectrum is
measured.
The zero-energy vibrational Zeff still needs to be con-

verted to thermal energies. A rough estimate of the size of
the correction can be made by using an approximate form
for the energy dependence of Zeff [24], e.g.,

ZeffðkÞ ¼ Zeffð0Þ
1þ ðAscatkÞ2

: (7)

Application of this result with a scattering length of
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FIG. 1. The scattering length (in a0) as a function of internu-
clear distance R for positron scattering from H2.
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�2:7a0 suggests a 1.5% reduction in the annihilation
parameter at thermal energies to a value of 15.5.

The scattering length implies a zero energy cross section
of �ð0Þ � 30�a20. A recent experiment by Zecca et al. [25]

had a cross section of 8:3�a20 at k � 0:086a�1
0 . The ex-

perimental cross section is absolutely incompatible with
the present scattering length and that of the UN group [9].
Improving the quality of the CVM wave function would
only lead to the magnitude of the scattering length increas-
ing, thus leading to larger discrepancies with the Zecca
et al. cross section [25].

The scattering length shows a tendency to increase in
magnitude as the internuclear separation is increased and a
virtual state is formed around R � 3:4a0. The maximum
scattering length is �13:0a0 at R ¼ 3:4a0. The peaking of
Zeff around 3:4a0 is expected since it is known that a large
scattering length leads to a large threshold Zeff [24]. The
large scattering length was a surprise. However, it is known
that the critical value for an electric quadrupole to bind a
charged particle is 2:4ea20 [26]. The quadrupole moment of

H2 increases from 0:91ea20 at R ¼ 1:4a0 before reaching a

maximum value of 2:03ea20 at R ¼ 3:0a0 [27]. We specu-

late that the large increase in scattering length can be
understood in terms of the larger quadrupole moment.
The recent method of models calculation by the UN group
exhibited a qualitatively similar variation of Zeff versus R
for R � 2a0 [12].

While the present calculation was performed under the
fixed nucleus approximation, it represents the first descrip-
tion with an unrestricted treatment of the positron-electron
interactions in the eþ-H2 collision system. The strong
increase in Zeff and Ascat with increasing internuclear dis-
tance due to virtual state formation at R � 3:4a0 was
totally unexpected. One of the most significant method-
ological aspects was the ease with which the inner region
wave function was generated. Using the present eþ-H2

wave function within a more formal scattering framework,
such as the Kohn variational method, would require sub-

stantial development work, but this would involve the
application of known procedures and would be
straightforward.
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FIG. 2. The close to zero energy Zeff as a function of inter-
nuclear distance R. The cross indicates the location of the R ¼
1:448a0 experimental values listed in Table I.
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