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We present a systematic and self-consistent analysis of four-quark charmonium states and applied it to

study compact four-quark systems and meson-meson molecules. Our results are robust and should serve to

clarify the situation of charmonium spectroscopy above the threshold production of charmed mesons.
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Understanding of charmonium spectroscopy is challeng-
ing for experimentalists and theorists alike. Charmonium
has been used as the test bed to demonstrate the color
Fermi-Breit structure of quark atoms obeying the same
principles as ordinary atoms [1]. Its nonrelativistic charac-
ter (v=c � 0:2–0:3) gave rise to an amazing agreement
between experiment and simple quark potential model
predictions as c �c states [2]. The opening of charmed meson
thresholds was expected to modify the trend in the con-
struction of quark-antiquark models. In the adiabatic ap-
proximation, meson loops were absorbed into the static
interquark potential. Thus, close to the threshold produc-
tion of charmed mesons models required an improved
interaction [3]. The corrections introduced to the quark-
antiquark spectra explained some deviations observed ex-
perimentally [4].

Since 2003, with the discovery of several states in the
open-charm sector, we have witnessed a growth of puz-
zling new mesons, D�

sJð2317Þ, DsJð2460Þ, and D�
0ð2308Þ

being the most prominent examples. Later, several new
states have joined this exclusive group either in the open-
charm sector, DsJð2860Þ and DsJð3040Þ, or in the charmo-
nium spectra, like the well-established Xð3872Þ and
Yð4260Þ, Zð3930Þ, Xð3940Þ, Yð3940Þ, Xð4008Þ, Xð4160Þ,
Xð4260Þ, Yð4350Þ, and Yð4660Þ. In addition, the Belle
Collaboration has reported the observation of similar states
with nonzero electric charge: the Zð4430Þ, the Z1ð4040Þ,
and the Z2ð4240Þ that have not yet been confirmed by other
experiments and remain somewhat controversial [5]. These
new states do not fit, in general, the simple predictions of
the quark-antiquark schemes and, moreover, they overpop-
ulate the expected number of states in (simple) two-body
theories. This situation is not uncommon in particle phys-
ics. For example, in the light scalar-isoscalar meson sector
hadronic molecules seem to be needed to explain the
experimental data [6–8]. Also, the study of the NN system
above the pion production threshold required new degrees
of freedom to be incorporated in the theory, either as pions
or as excited states of the nucleon, i.e., the � [9,10]. This
discussion suggests that charmonium spectroscopy could

be rather simple below the threshold production of
charmed mesons but much more complex above it. In
particular, the coupling to the closest ðc �cÞðn �nÞ system,
referred to as unquenching the naı̈ve quark model [11],
could be an important spectroscopic ingredient. Besides,
hidden-charm four-quark states could explain the overpop-
ulation of quark-antiquark theoretical states. Thus, the new
experimental discoveries are offering exciting new insights
into the subtleties of the strong interaction.
In an attempt to disentangle the role played by multi-

quark configurations in the charmonium spectroscopy, we
have obtained an exact solution of the four-body problem
based on an infinite expansion of the four-quark wave
function in terms of hyperspherical harmonics [12]. The
method is exact but is not completely adequate to study
states that are close to but below the charmed meson
production threshold. Such states are called molecular in
the sense that they can be exactly expanded in terms of a
single singlet-singlet color vector. Close to a threshold,
methods based on a series expansion fail to converge since
an arbitrary large number of terms are required to deter-
mine the wave function. From our analysis, we concluded
that those four-quark states with two different asymptotic
physical thresholds [as is the case of the c �cn �n system that
may split into either a ðc �cÞðn �nÞ or a ðc �nÞðn �cÞ two-meson
state] can hardly present a bound state since the interaction
between any pair of quarks contributes to the energy of one
of the two physical thresholds. However, we observed that
the root mean square radius of a few channels did not grow
in the same manner as in those channels clearly converging
to an unbound two-meson threshold. Instead, their radius
remained stable and their energy did not cease slightly
decreasing.
For this reason, we have used a different technique that

we developed when studying baryon spectra with screened
potentials and that showed to be very powerful close to a
threshold [13]. In this case, the hyperspherical harmonic
expansion of the wave function was computationally very
expensive. Instead, we solved the Faddeev equations for
negative energies using the Fredholm determinant method
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that permitted us to obtain robust predictions even for zero-
energy bound states. For the charmonium, the situation is
similar but simpler: similar because we are working on the
region where methods based on infinite expansions are
inefficient but simpler since it is a two-body problem, the
scattering of two mesons. Thus, we solve the Lippmann-
Schwinger equation looking for attractive channels that
may contain a meson-meson molecule. In order to account
for all basis states, we allow for the coupling to
charmonium-light two-meson systems. With this method,
we circumvent the uncertainties associated to the slow
convergence of the hyperspherical harmonic method for
large grand angular momenta.

When we consider the system of two mesonsM1 and �M2

(Mi ¼ D, D�) in a relative S state interacting through a
potential V that contains a tensor force, then, in general,
there is a coupling to the M1

�M2 D wave, and the
Lippmann-Schwinger equation of the system is

t‘s‘
00s00

ji ðp; p00;EÞ ¼ V‘s‘00s00
ji ðp; p00Þ

þX

‘0s0

Z 1

0
p02dp0V‘s‘0s0

ji ðp; p0Þ

� 1

E� p02=2�þ i�
t‘

0s0‘00s00
ji ðp0; p00;EÞ;

(1)

where t is the two-body amplitude, j, i, and E are the
angular momentum, isospin, and energy of the system,
and ‘s, ‘0s0, ‘00s00 are the initial, intermediate, and final
orbital angular momentum and spin; p and � are the
relative momentum and reduced mass of the two-body
system, respectively. In the case of a two D meson system
that can couple to a charmonium-light two-meson state, for
example, when D �D� is coupled to J=�!, the Lippmann-
Schwinger equation for D �D� scattering becomes

t
‘�s�‘�s�
��;ji ðp�; p�;EÞ ¼ V

‘�s�‘�s�
��;ji ðp�; p�Þ þ

X
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X
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��;ji ðp�; p�ÞG�ðE;p�Þt‘�s�‘�s���;ji ðp�; p�;EÞ;

(2)

with �, � ¼ D �D�, J=�!. For a bound state, E< 0, the
singularity of the propagator is never reached, and we can
neglect i� in the denominator. By changing variables,

p0ðp�Þ ¼ b
1þ x0

1� x0
; (3)

where b is a scale parameter and the same for pðp�Þ and
p00ðp�Þ. Replacing the integral from �1 to 1 by a Gauss-
Legendre quadrature, we obtain a set of linear equations. If
a bound state exists at an energy EB, the matrix determi-
nant is zero. We took the scale parameter b of Eqs. (1) and
(2) to be b ¼ 3 fm�1 and used a Gauss-Legendre quad-
rature with N ¼ 20 points.

We have consistently used the same interacting
Hamiltonian to study the two- and four-quark systems to
guarantee that thresholds and possible bound states are
eigenstates of the same Hamiltonian. Such interaction
contains a universal one-gluon exchange, confinement,
and a chiral potential between light quarks [14]. We have
solved the coupled channel problem of the D �D, D �D�, and
D� �D�. In all cases, we have included the coupling to the
relevant ðc �cÞðn �nÞ channel (from now on denoted as J=�!
channels).

As we study systems with well-defined C parity, let us
comment on the D �D� system. Since neither D �D� nor �DD�
are eigenstates of C parity, it is necessary to construct the
proper linear combinations. Taking into account that
CðDÞ ¼ �D and CðD�Þ ¼ � �D� (with a relative minus sign
between them), it can be found that [15]

D1 ¼ 1ffiffiffi
2

p ðD �D� þ �DD�Þ (4)

and

D2 ¼ 1
ffiffiffi
2

p ðD �D� � �DD�Þ (5)

are the eigenstates corresponding to C ¼ �1 and C ¼ þ1,
respectively. This does not depend on the quantum num-
bers of the system because D and D� are not a particle-
antiparticle pair. Once the C parity of a D �D� state is fixed,
its isospin is also determined. In particular, for a D �D�
S-wave state, positive C parity requires isospin 0, while
negative C parity implies isospin 1.
Table I and Figs. 1 and 2 summarize our results. We have

specified the quantum numbers and plotted the Fredholm
determinant of the attractive channels. The rest, not shown
in the table, are either repulsive or have zero probability to
contain a bound state or a resonance. Let us remark that, of
all possible channels, only a few are attractive. Of the
systems made of a particle and its corresponding antipar-
ticle, the JPCðIÞ ¼ 0þþð0Þ channel is always attractive. In
general, the coupling to the �c� channel reduces the
attraction, but there is still enough attraction to expect a
resonance close to and above the threshold. This channel is

TABLE I. Attractive channels for the two D-mesons system.

System JPCðIÞ
D �D 0þþð0Þ
D �D� 1þþð0Þ
D� �D� 0þþð0Þ
D� �D� 2þþð0Þ
D� �D� 2þþð1Þ
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much more attractive for the D� �D� system than for D �D;
thus, in the latter, one could expect a wider resonance. It is
easy to explain the reason for such a close-to-bind situation
with these quantum numbers. They can be reached from a
two-meson system without explicit orbital angular mo-
mentum, while through a simple c �c pair it needs a unit of
orbital angular momentum. Similar arguments were used
to explain the proliferation of light scalar-isoscalar mesons
[6–8]. The most attractive channel in the D �D� case is the
JPCðIÞ ¼ 1þþð0Þ and can be explained as before except for
the unity of intrinsic spin due to the D� meson. A simple
calculation of the D �D� system [Eq. (1)] indicates that the
JPCðIÞ ¼ 1þþð0Þ and 1þ�ð1Þ are degenerate. It is the cou-

pling to the J=�! [Eq. (2)] that breaks the degeneracy to
make the 1þþð0Þ more attractive. The isospin 1 channel
becomes repulsive due to the coupling to the lightest
channel that includes a pion. Then, the existence of
meson-meson molecules in the isospin one D �D� channels
can be discarded. Using the coupling to the J=�!, not
present in the calculations at the hadronic level of [16,17],
we obtain a binding energy for the JPCðIÞ ¼ 1þþð0Þ in the
range 0–1 MeV, in good agreement with the experimental
measurements of Xð3872Þ (see Fig. 1). This result supports
the analysis of the Belle data on B ! K þ J=��þ�� and
B ! K þD0 �D0�0 that favor the Xð3872Þ being a bound
state whose mass is below the D0 �D0 threshold [15]. The
existence of a bound state in the 1þþð0Þ D �D� channel
would not show up in the D �D system because of quantum
number conservation.
Finally, we have found that the JPCðIÞ ¼ 2þþð0; 1Þ

D� �D� (see Fig. 2) are also attractive due to the coupling
to the J=�! and J=�� channels, respectively. This would
give rise to new states around 4 GeV=c2 and one experi-
mental candidate could be the Yð4008Þ. In this case, such a
resonance would also appear in the D �D system for large
relative orbital angular momentum, L ¼ 2. A similar
behavior can be observed in resonances predicted for the
�� system [18].
In all cases, being loosely bound states whose masses are

close to the sum of their constituent meson masses, their
decay and production properties must be quite different
from conventional q �q mesons. Our calculation does not
exclude a possible mixture of standard charmonium states
in the channels where we have found attractive molecular
systems. This admixture could explain some properties of
the Xð3872Þ [19,20]. We would like to emphasize the
similarity of our results to those of Ref. [21] in spite of
our different approach. Our treatment is general, dealing
simultaneously with the two- and four-body problems and
using an interaction containing gluon and quark exchanges
instead of the simple two-body one-pion exchange poten-
tial of Ref. [21]. Nevertheless, we also concluded that the
lighter meson-meson molecules are in the vector-vector
and pseudoscalar-vector two-meson channels. Finally, let
us remark that our approach could also be applied to the
c �cs�s sector.
To summarize, we have performed the first systematic

analysis of four-quark hidden-charm states as compact
states or meson-meson molecules. For the first time, we
have performed a consistent study of all quantum numbers
within the same model. Our predictions robustly show that
no deeply bound states can be expected for this system.
Only a few channels can be expected to present observable
resonances or slightly bound states. Among them, we have
found that the D �D� system must show a bound state
slightly below the threshold for charmed mesons produc-
tion with quantum numbers JPCðIÞ ¼ 1þþð0Þ, which could
correspond to the widely discussed Xð3872Þ. Of the sys-

FIG. 2. Fredholm determinant of the most attractive JPCðIÞ
channels for the D �D and D� �D� systems.

FIG. 1. Fredholm determinant for the JPCðIÞ ¼ 1þþð0Þ D �D�
system. Solid (dashed) line: results with (without) coupling to
the J=�! channel.
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tems made of a particle and its corresponding antiparticle,
D �D and D� �D�, the JPCðIÞ ¼ 0þþð0Þ is attractive. It would
be the only candidate to accommodate a wide resonance
for theD �D system. For theD� �D�, the attraction is stronger
and structures may be observed close to and above the
charmed meson production threshold. Also, we have
shown that the JPCðIÞ ¼ 2þþð0; 1Þ D� �D� channels are
attractive due to the coupling to the J=�! and J=��
channels. Because of heavy quark symmetry, replacing
the charm quarks by bottom quarks decreases the kinetic
energy without significantly changing the potential energy.
In consequence, four-quark bottomonium mesons must
also exist and have larger binding energies. An experimen-
tal effort in this direction will confirm or rule out the
theoretical expectations. If the scenario presented here
turns out to be correct, it will open a new and interesting
spectroscopic area.
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Note added.—Recently, we learned that particular stud-
ies of some of the new charmonium states coincide with
our theoretical predictions about the more attractive quan-
tum numbers [22].
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