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Gravitational radiation is properly defined only at future null infinity (Jþ), but in practice it is

estimated from data calculated at a finite radius. We have used characteristic extraction to calculate

gravitational radiation at Jþ for the inspiral and merger of two equal-mass nonspinning black holes. Thus

we have determined the first unambiguous merger waveforms for this problem. The implementation is

general purpose and can be applied to calculate the gravitational radiation, at Jþ, given data at a finite

radius calculated in another computation.
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Introductory remarks.—The computation of gravita-
tional radiation from black hole merger events has attracted
considerable attention, since the pioneering work by Smarr
and collaborators [1–3]. With the advent of ground-based
laser interferometric gravitational wave detectors, as well
as the prospect of the Laser Interferometer Space Antenna
(LISA), interest in the problem has considerably increased.
The measurement of gravitational waves will soon provide
an important probe of strong-field nonlinear gravity, the
domain of many fundamental questions in astrophysics.
The sensitivity of LISA, and of the upcoming advanced
ground-based detectors AdLIGO and AdVirgo, is so high
that even an error in the waveform calculation of 0.1% (in a
sense made precise later) could lead to an incorrect inter-
pretation of the astrophysical properties of a source, or of a
test of general relativity. Nowadays, there are several codes
that can produce a stable and convergent simulation of a
black hole spacetime. However, a particular difficulty with
measuring gravitational radiation arises from the fact that,
in general relativity, it cannot be defined locally but is
defined only at future null infinity (Jþ), which, physically,
is the limit that is approached by radiation moving at the
speed of light away from an isolated source. Since numeri-
cal evolutions are normally carried out on finite domains,
there is a systematic error caused by estimating the gravi-
tational radiation from fields on a worldtube at finite radius
and the uncertainty in how it relates to measurement at Jþ
[4]. Even if this error is small, the expected sensitivity of
AdLIGO, AdVirgo, and LISA implies that it is important to
obtain an accurate result.

A rigorous formalism for the global measurement of
gravitational energy at null infinity has been in place since
the pioneering work of Bondi, Penrose, and collaborators
in the 1960s [5,6], and subsequently, techniques for calcu-
lating gravitational radiation at Jþ have been developed.
The idea which we pursue here is to combine a Cauchy or
‘‘3þ 1’’ numerical relativity code with a characteristic

code [7]. Given astrophysical initial data, such a method
has only discretization error [8], and a complete mathe-
matical specification has been developed [9]. There have
been efforts to implement this method, often called Cauchy
characteristic extraction (CCE), or characteristic extraction
[10,11]. Previous work has considered test problems rather
than that of the inspiral and merger of two black holes or
neutron stars. Also, earlier efforts have combined the
Cauchy and characteristic algorithms within the same
code.
Here, we describe the implementation of a CCE code as

well as results obtained from the code for the inspiral and
merger waveform of two equal-mass, nonspinning, black
holes. The waveforms are calculated at Jþ, and are thus
the first unambiguous waveforms which have been ob-
tained for this problem, in the sense of being free of gauge
or finite-radius effects. Further, the code is general pur-
pose, in that it is independent of the details of the Cauchy
code, requiring only that it prescribes the required geomet-
rical data on a worldtube. Thus its application to other
astrophysical problems will be straightforward.
For the specific problem of a binary black hole merger,

we show that the waveform obtained at Jþ contains only
numerical error and is gauge-invariant. We demonstrate
second-order convergence to zero in the amplitude and
phase differences between two CCE runs using boundary
data at different radii. We compare the waveform obtained
at Jþ with a finite-radius extrapolated waveform, and find
that the corrections introduced by CCE are visible in the
ground-based detectors AdLIGO and AdVirgo, as well as
the space-based LISA detector.
Cauchy evolution.—The scenario we envision is an iso-

lated system (perturbed single body, or gravitationally
bound binary), in a region on which the Einstein (and
possibly hydrodynamic) equations must be solved. A stan-
dard procedure for doing this is to formulate the equations
as an initial-boundary value, or Cauchy, problem, in which
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data for the three-metric and its embedding is prescribed at
a given time on a closed region of the spacetime �t. These
are evolved according to the Einstein equations on the
interior of the domain and artificial conditions on the time-
like boundary @�t. The first stable evolutions of a binary
black hole system were carried out by Pretorius [12]. Two
approaches to the evolution of the interior equations are in
use: (a) the harmonic formulation of the Einstein equations
with excised black hole interiors [12,13] and (b) the
BSSNOK (see [14] and references therein) evolution sys-
tem with the black holes specified as moving ‘‘punctures’’
[15,16].

For the Cauchy evolutions used here, we have followed
the latter approach using the formulation outlined in [17].
The spacetime is discretized using finite differences on
Cartesian grids and Berger-Oliger mesh refinement in the
neighborhood of the black holes [18]. The wave zone is
discretized by six overlapping coordinate patches with
spherical topology. Interior boundary data between adja-
cent patches are communicated by interpolation [19,20].

The outer boundary condition on the exterior of the
domain is given by a linear outgoing wave condition on
each of the evolved tensor components. Importantly,
through the use of spherical grids in the wave zone, a
sufficient resolution can be maintained even to a distant
outer boundary, reducing the effect of grid reflections
common in mesh-refinement codes. The size of the evolu-
tion domain is chosen according to the amount of time
required T and the location of the outermost measurement
sphere ri. Since physical as well as constraint violating
modes propagate with the speed of light, an outer boundary
located at r@�t

> T þ ri ensures that measurements are

causally disconnected from the influence of the outer
boundary.

Characteristic extraction.—Our implementation of CCE
is based on the mathematical prescription given in [9], and
here we provide only an outline. The process is illustrated
schematically in Fig. 1. Within a Cauchy simulation that
uses Minkowski-like coordinates (t; x; y; z), we define a
worldtube � by x2 þ y2 þ z2 ¼ r2�, and compute the lapse

�, the shift �i, and the three-metric �ij on �, as well as

their first time and radial derivatives. These data are then
decomposed into spherical harmonics. The Cauchy code
writes this spherical harmonic coefficient data to file, and
later the CCE code postprocesses the data to reconstruct
the four-metric on the inner worldtube. In this way, the
CCE code is general purpose, as it runs independently of
whatever Cauchy code was used to generate the worldtube
data.

The CCE code defines angular coordinates�A as well as
a time coordinate u (¼t) on �, and constructs outgoing
null geodesics with affine parameter �. It then transforms
the Cauchy four-metric to (u; �;�A) coordinates, and cal-
culates a surface area radial coordinate rS, making the
coordinate transformation to (u; rS; �

A) coordinates, in

order to obtain the Bondi-Sachs metric data in a neighbor-
hood of �. This provides the inner boundary data for the
characteristic evolution, using a CACTUS [21] implementa-
tion of the PITT null evolution code with square stereo-
graphic coordinate patches [22]. The characteristic code
uses coordinates based on outgoing null cones, and so the
equations remain regular when the radial coordinate is
compactified [by rS ! z ¼ rS=ðrS þ rS�Þ], and in this
way Jþ is included on the computational grid. The code
computes the gravitational radiation at Jþ as the Weyl
component c 4. The coordinate-independent quantity c 4 is
commonly used in numerical relativity; in appropriate
coordinates, it is the second time derivative of the strain
measured by a detector.
Binary black hole evolution.—We have carried out fully

relativistic evolutions of an equal-mass nonspinning binary
black hole inspiral and merger. The initial data parameters
for the closely bound black hole are determined by per-
forming a post-Newtonian evolution from large separation
in order to determine the momenta for low-eccentricity
(quasicircular) trajectories [23]. The subsequent full non-
linear numerical relativity evolution proceeds for approxi-
mately 8 orbits (1350M), followed by the merger and
ringdown lasting another 100M.
The evolutions have been carried out at two different

grid resolutions in order to verify the convergence of the
numerical scheme. The grid settings for the Cauchy code
are the central Cartesian grid consists of 6 levels of 2:1
mesh refinement, with coarse grid spacings of h ¼ 0:96M
and h ¼ 0:64M, respectively. A grid of spherical topology
covers the far field, r 2 ½35M; 3600M�, so that, during the
time period of interest, the outer boundary is causally
disconnected from any extraction sphere (see Fig. 1). The
radial spacing is commensurate with the coarse Cartesian

FIG. 1 (color online). Schematic of the CCE algorithm with
two spatial dimensions suppressed. Spacelike slices �t are
evolved according to the Cauchy evolution scheme (horizontal
lines). Geometrical data are recorded on a worldtube �, which is
used as interior boundary data for a characteristic evolution
along u ¼ const null surfaces, transporting the data to Jþ.
The outer boundary of the Cauchy domain @�t is chosen so
that it is causally disconnected from � over the course of the
evolution.
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grid at the interface, and (for reasons of efficiency) is
gradually scaled to h ¼ 3:84M and h ¼ 2:56M at the outer
boundary for the two runs. We use corresponding Nang ¼
21 and Nang ¼ 31 points in each of the angular directions

per patch.
Characteristic boundary data were interpolated onto

worldtubes located at r ¼ 100M and r ¼ 200M, and
stored in the form of spherical harmonic coefficients, up
to ‘ ¼ 8, which was found to be the highest resolved mode.
The resolutions of the characteristic evolutions are set up
according to the respective resolutions of the Cauchy run.
We use Nr ¼ 321 and Nr ¼ 481 radial points, withNang ¼
51 and Nang ¼ 76 angular points per angular patch. The

dominant ‘ ¼ 2, m ¼ 2 mode of the gravitational wave-
form resulting from the numerical evolution is plotted in
Fig. 2, to be described in more detail below.

Invariance with respect to the worldtube location is
demonstrated in Fig. 3. We have considered the differences
between waveforms at Jþ resulting from two independent
characteristic evolutions using boundary data at r� ¼
100M and r� ¼ 200M, respectively, and for two resolu-
tions, h ¼ 0:96M and h ¼ 0:64M. The difference between
the results should be entirely due to the discretization error,
and indeed this is what we find. The differences converge
to zero with approximately second-order accuracy, as ex-
pected for the null evolution code. The figure displays the
differences �c 4 in the amplitude of the wave mode
c 4ð‘ ¼ 2; m ¼ 2Þ for resolution h ¼ 0:96M and h ¼
0:64M scaled for second-order convergence. The same

order of convergence is also obtained for higher order
modes such as c 4ð‘ ¼ 4; m ¼ 4Þ (not displayed). The
differences between the waveforms at Jþ for resolution
h ¼ 0:64M are of order of 0.03% in amplitude with a
dephasing of 0.002 rad.
The CCE waves can be used to evaluate the quality of

standard finite-radius measurements, extrapolated to r !
1; previously, this was the most accurate option available.
We do so by finding the Weyl component c 4 relative to a
radially oriented null tetrad [17] (we prefer c 4 to gauge-
invariant perturbative methods [24–26]). We have evalu-
ated c 4 at six radii (r ¼ 280; 300; 400; 500; 600; 1000M)
and extrapolated. Details are given in [19], and the error is
estimated as 0.03% in amplitude and 0.003 rad in phase.
In Fig. 2, we compare the extrapolated waveform with

that calculated at Jþ via CCE. The differences between
the two waveforms have maximum and mean values of
1.08% and 0.166% in amplitude, and �0:019 and
�0:004 rad in phase, respectively. That is, for the resolu-
tions used, the numerical error in the characteristic evolu-
tion (see Fig. 3) is smaller by 1 order of magnitude than the
error between the extrapolated and characteristic wave-
forms in both amplitude and phase. Further, we note that
the estimated error in the extrapolation is itself much
smaller than the actual error between characteristic wave-
form and extrapolated waveform. This indicates that the
systematic error in extrapolation has, previously, been
underestimated. The correction is towards slightly larger
amplitudes and frequencies. CCE postprocesses data pro-
duced by a Cauchy code, and as such there is an additional
cost. However, it is relatively small: the Cauchy run re-
ported here took �336 h, and then CCE required �10 h.
Will the small correction to waveforms introduced by

CCE be relevant to interpreting observational data? The
answer will depend on the signal-to-noise ratio (SNR) of
the event. At low SNR, whether CCE or extrapolated
waveforms are used as a template will not affect physical

FIG. 2 (color online). Inspiral, merger, and ringdown phase of
c 4ð‘ ¼ 2; m ¼ 2Þ as obtained from finite-radius extrapolation
(red) and at Jþ (blue). The waveforms are aligned at their peaks.
There is a maximum difference of 1.08% in the amplitude and a
dephasing of 0.019 rad between the two waves. These differ-
ences can introduce systematic errors to parameter estimation of
events detected at high SNR.

5

4

FIG. 3 (color online). Differences �c 4 in the amplitude of
c 4ð‘ ¼ 2; m ¼ 2Þ between two characteristic runs using bound-
ary data from R� ¼ 100M and R� ¼ 200M. The red curve
shows the difference at resolution h ¼ 0:96M while the blue
curve shows the difference for h ¼ 0:64M, scaled so as to line up
for second-order convergence. The expected second-order con-
vergence of our code is thus demonstrated.
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interpretation. This is particularly relevant, as numerical
waveforms are being constructed with the intention of
evaluating and parametrizing detector templates and
search algorithms [27], and to constrain analytic models
[28–31]. Our results indicate that extrapolations from a
finite radius can be used to construct detector templates
well within the accuracy standards required by matched
filtering algorithms.

However, at large SNR, the differences are significant to
the determination of the physical parameters of a model
measured in detector data. To demonstrate this, we follow
methods described in [32,33] to determine the minimum
SNR needed for a detected signal from a merger event to
lead to different parameter estimates depending on which
waveform is used as a template. Table I displays the results
for selected masses, indicating the maximum distance at
which the difference between the waveforms will be rele-
vant for the given merger event.

The difference between the waveforms is unlikely to be
relevant for LIGO, (e)LIGO, and Virgo. Reasonable stellar
mass black hole merger rates are expected only for a
volume encompassing sources up to a distance of at least
100 Mpc. Thus, there may well be events detected by
AdLIGO and AdVirgo for which the difference is impor-
tant. Finally, the differences will certainly be relevant for
LISA as they will be applicable to any supermassive black
hole merger event throughout the visible universe (cH�1 is
the Hubble radius).
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[22] N. T. Bishop, R. Gómez, L. Lehner, M. Maharaj, and
J. Winicour, Phys. Rev. D 56, 6298 (1997).

[23] S. Husa, M. Hannam, J. A. Gonzalez, U. Sperhake, and
B. Bruegmann, Phys. Rev. D 77, 044037 (2008).

[24] V. Moncrief, Ann. Phys. (N.Y.) 88, 323 (1974).
[25] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).
[26] A. Nagar and L. Rezzolla, Classical Quantum Gravity 22,

R167 (2005).
[27] B. Aylott et al., Classical Quantum Gravity 26, 165008

(2009).
[28] A. Buonanno et al., Phys. Rev. D 79, 124028 (2009).
[29] T. Damour and A. Nagar, arXiv:0902.0136.
[30] P. Ajith et al., Phys. Rev. D 77, 104017 (2008).
[31] P. Ajith et al., arXiv:0909.2867.
[32] L. Lindblom, B. J. Owen, and D.A. Brown, Phys. Rev. D

78, 124020 (2008).
[33] M. Hannam et al., Phys. Rev. D 79, 084025 (2009).

TABLE I. Maximum distance at which the difference between
the extrapolated waveform and that at Jþ would be significant
for a black hole merger event.

Detector Masses Maximum distance

LIGO 50M� þ 50M� 5 Mpc

(e)LIGO 50M� þ 50M� 8 Mpc

Virgo 50M� þ 50M� 14 Mpc

AdLIGO 50M� þ 50M� 197 Mpc

AdVirgo 50M� þ 50M� 177 Mpc

LISA 107M� þ 107M� >cH�1
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