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Judiciously matched experiments, calculations, and theory demonstrate that a higher sensitivity to

short-range interactions and, consequently, improved resolution on the atomic scale can be achieved by

bimodal noncontact dynamic force microscopy. The combination of sub-Ångström tip oscillation at the

second flexural resonance of a commercially available silicon cantilever with the commonly used large

amplitude oscillation at the fundamental resonance frequency enables this performance improvement

while avoiding potentially damaging jump-to-contact instabilities.
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Since the way to obtain atomically resolved images
using frequency-modulation dynamic force microscopy
(DFM) was established in 1995 [1], this technique has
become a powerful tool [2]. The tip-sample distance is
conventionally controlled via the frequency shift �f1st of
the first flexural resonance of a cantilever caused by inter-
action forces [3]. Atomic-scale contrast arises from short-
range forces due to covalent and/or ionic bonding [4,5].
Typically stronger long-range interactions, which depend
on the macroscopic tip geometry and the electrostatic
potential, act as a background force, but an ultrasharp tip
can reduce this contribution. In order to optimize the
detection sensitivity of short-range forces, as well as the
signal/noise ratio, a small tip oscillation amplitude com-
parable to the decay length of the short-range interaction
(�0:1 nm) is desirable [6–8]. A sufficiently high flexural
stiffness kc of the deflection sensor is required to maintain
a small amplitude while keeping a stable oscillation.
Despite its relatively low mechanical quality factor (Q �
2000) and low resonance frequency (f1st � 20 kHz), the
tuning fork sensor (kc � 1800 N=m) [8,9] used in those
pioneering studies [7] has recently been adopted by sev-
eral groups. Atomic resolution has also been obtained
using nonresonant low-frequency excitation in combina-
tion with a sensitive interferometric detector [10]. A force
sensor with Q> 10 000 and f1st > 1 MHz is expected to
further enhance spatial resolution [3]. Fortunately, the
effective stiffness of higher resonance modes [11] of com-
mercially available cantilevers is high enough to achieve
small amplitude operation while satisfying those condi-
tions [12–14].

Using the second flexural mode, stable images have been
recorded on the Si(111) surface with amplitudes as small as
70 pm [12,13,15]. In those studies, enhanced sensitivity to
short-range interactions due to the small amplitude and a
sharp silicon tip enabled imaging at larger tip-sample
distances than in conventional DFM. Higher resolution is
expected at closer tip-sample distances, i.e., by setting a
more negative frequency shift. However, when the closest

tip-sample distance in an oscillation cycle becomes com-
parable to the interatomic spacings, strong attractive forces
increases the likelihood of sample and/or tip atom jumps
[16]. The resulting force jumps and energy dissipation may
prevent stable amplitude control [8]. Moreover, at even
smaller closest approach tip-sample distances, the forma-
tion and breaking of atomic-scale junctions or necks [17–
19] may prevent stable operation. Therefore, stable imag-
ing with small amplitudes at close tip-sample distance is
quite challenging, especially on a soft sample surface at
room temperature. Recently, frequency vs distance curves
without jumps have been measured down to shorter tip-
sample distances, albeit using amplitudes larger than about
0.4 nm [14,20].
We circumvented those limitations by simultaneously

driving the cantilever at the first f1st and the second flexural
resonance frequencies f2nd, with judiciously chosen am-
plitudes A1st and A2nd, respectively. If A2nd � A1st, it is
theoretically and experimentally demonstrated that �f2nd
is proportional to the force gradient F0 averaged over the
large oscillation at f1st. Nevertheless, the distance depen-
dence of�f2nd nearly follows that of F

0. The resulting high
sensitivity significantly enhances the atomic-scale con-
trast, while possible instabilities are avoided. Bimodal
operation has previously been developed for the amplitude
modulation mode in air and liquids, albeit on scales of
several to hundreds of nanometers [21–23].
Our experiments were carried out with a DFM setup

designed in house [24], which operates at room tempera-
ture in ultrahigh vacuum. A clean(001) surface of the KBr
sample was obtained by cleaving the crystal in the prepa-
ration chamber (p < 3� 10�10 mbar), then annealing it to
remove residual charges. The tip was cleaned by Arþ
sputtering. To obtain atomic resolution, the tip was first
gently brought into contact with the surface. The first and
second flexural resonance modes of a rectangular silicon
cantilever (Nanosensors PPP-NCL, kc ¼ 26:5 N=m) were
simultaneously excited with a piezo actuator while keeping
preset oscillation amplitudes with automatic gain control-
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lers. �f1st and �f2nd were demodulated with two indepen-
dent phase-locked loop (PLL) circuits (Nanonis Dual-
OC4). A1st and A2nd were calibrated via the constant fre-
quency shift method [25], using initial amplitudes of
10 nm. The error, which mainly comes from the inaccuracy
of the z piezo calibration, was around 10%. The measure-
ments were analyzed using the WSXM software [26].

The steady-state motion of the tip apex in resonant
bimodal DFM is adequately described by zðtÞ ¼
z0 þ A1st cos�1 þ A2nd cos�2, where z0 is the equilibrium
position and �i ¼ 2�fit��i the phase of the ith mode.
Extending the derivation of �f1st in conventional DFM
[27] to the bimodal case, �f1st and �f2nd at the closest
approach tip-sample distance (zc ¼ z0 � A1st � A2nd) can
be obtained from

Aiki
�fi
fi

¼ 1

2�ni

Z 2�ni

0
F½zðtÞ� cos�id�i; (1)

where ni is the (very large) number of oscillation cycles
sampled at each recording point, ki the effective stiffness of
the ith mode [11] and FðzÞ the conservative part of the
force acting on the tip. Equation (1) is valid as long as
�fi=fi � 1. Harmonic, sum, and difference frequency
components of zðtÞ generated by the nonlinearity of FðzÞ
are then negligible. For i ¼ 1 the validity condition pre-
vents cantilever jump-to-contact for large A1st; for i ¼ 2 it
can be satisfied even for small A2nd provided k2nd is high
enough. Because f1st and f2nd are incommensurate, only
the force component oscillating at fi makes a finite con-
tribution to the integral in Eq. (1). Hence the right-hand
side is the same when A1st ¼ A2nd. On the other hand, if
A2nd � A1st, �f1st is essentially the same as in conven-
tional DFM, whereas expansion of zðtÞ in powers of
A2nd cos�2 gives a contribution to �f2nd which averages
to zero in leading order. The next order contribution to the
integrand, being proportional to cos2�2 is finite. In the limit
n2 ! 1, incommensurability implies that the �2 integra-
tion over successive cycles of the oscillation at f1st is
equivalent to a dense sampling over a single cycle, and
one obtains

k2nd
�f2nd
f2nd

ffi � 1

4�

Z 2�

0
F0ðz0 þ A1st cos�1Þd�1: (2)

Because F0 ¼ dF=dz varies more rapidly than F itself, the
short-range contribution to �f2nd is stronger than to �f1st
in conventional DFM with the same A1st. It is instructive to
compare Eq. (2) to the well known small A2nd limit in the
absence of simultaneous excitation at f1st, namely

k2nd�f2nd
f2nd

¼ �F0ðz0Þ
2

: (3)

For this reason, we henceforth define the time-averaged F0
as �F0

i � �2ki�fi=fi. In order to test these novel results, a
simple model based on the Morse potential for the short-
range interaction and a Hamaker-type long-range interac-

tion [28] was used. When calculating the latter, the tip
radius was set to be 10 nm and the tip-sample distance was
offset by 500 pm. Figure 1(a) shows the resulting total
interaction FðzÞ and its F0ðzÞ, using the same parameters as
in previous studies of Si(111) [4,15].
Figures 1(b)–1(d) show �F0

1st and
�F0
2nd numerically cal-

culated over 210 and 1350 oscillation cycles, respectively.
As Fig. 1(b) shows that if A1st ¼ A2nd ¼ 10 nm, �F0

1st is, as
predicted, indistinguishable from �F0

2nd. For a smaller

A2nd ¼ 330 pm the two signals deviate from each other,
as shown in Fig. 1(c). Most importantly, the shape of the
�F0
2nd curve obtained with an ultrasmall A2nd appears close

to that of F0, as seen by comparing Figs. 1(a) and 1(d). The
maximum value of �F0

2nd is about 6.6 smaller than the

maximum value of the gradient, but points calculated
from Eq. (2) fall on the curve directly calculated from
Eq. (1). Averaging over the oscillation at f1st thus primarily
affects the magnitude rather than the distance dependence
of �F0

2nd.

In order to unambiguously illustrate the improvement in
contrast and sensitivity between �f1st and �f2nd in bi-
modal DFM, corresponding images of KBr(001) were
recorded in the quasiconstant height mode. The tip-sample
distance feedback gains were adjusted such that the topo-
graphic corrugation amplitude was below 1 pm, but the
slow thermal drift of the tip-sample distance could be
compensated. The amplitudes of the first A1st and second
flexural modes A2nd were 10 nm and 50 pm, respectively.
Figure 2 shows a series of bimodal DFM images at de-
creasing tip-sample distances, controlled via �f1st with a
step of �2:0 Hz from �14:0 Hz to �20:0 Hz. The band-
widths of the respective frequency demodulators were set
at the largest tip-sample distance. Because A2nd � A1st, the
contrast in �f1st is essentially unaffected by the super-
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FIG. 1 (color online). Calculated distance dependence of (a)
the interaction force F and force gradient F0 calculated with the
assumed model potential (see text) and of �F0

1st and
�F0
2nd with

A2nd ¼ 10 nm in (b), A2nd ¼ 330 pm in (c), and A2nd ¼ 10 pm
in (d). A1st ¼ 10 nm, f1st ¼ 150 kHz, and f2nd ¼ 980 kHz, in
all cases. The points in (d) were calculated using Eq. (2).
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posed oscillation at f2nd. Note that in the depicted range,
the absolute modulation of�f2nd is about 10 times stronger
than the modulation of �f1st. This is consistent with the
predicted sensitivity enhancement to short-range forces.
However, in order to demonstrate contrast improvement
it may be more appropriate to compare signal/noise ratios.
This is achieved by adjusting the vertical scales in the line
profiles are adjusted so that the frequency variations appear
the same. Remarkably, the signal-to-noise in �f2nd be-
comes better than that in �f1st as the tip-sample distance
is reduced.

At the largest tip-sample distance in Fig. 2(a), the overall
observed features in the �f1st and �f2nd maps are the
same. In Fig. 2(b), the shape of the bright maxima in the
�f1st map does not change, but in the �f2nd map they
appear slightly stretched in the vertical direction. This
distortion continuously changed, so that the observed max-
ima almost merge in [Figs. 2(c) and 2(d)]. Judging from
simulations which assumed model KBr tips [29,30], this
distortion is mainly due to reversible tip deformations.
Comparisons of the magnitude of the computed short-
range forces with those extracted from measurements on
KBr(001) reported by the same authors strongly suggest
that the silicon tip is in fact terminated by a KBr cluster. In
our measurements, observed contrast details are indeed
sensitive to the tip condition [cf. Figs. 1(d)–1(f) of [31] ]
and, since the tip apex deforms easier than the surface, tip
deformations presumably dominate.

The contrast distortion appears almost exclusively in the
�f2nd map. Together with the comparison of the line
profiles, we therefore conclude that the sensitivity to
short-range interactions and to induced deformations is
significantly higher in �f2nd than in �f1st when A2nd is
set below 100 pm. Additional evidence for contrast im-
provement in the topographic mode (constant �f1st) are
provided in [31].
Distant-dependent measurements were performed above

a maximum in Fig. 1(d) of Ref. [31]. Figure 3 shows
simultaneously recorded variations of �f1st and �f2nd.
When A1st is equal to A2nd, these two curves have the
same shapes, as predicted and shown in Fig. 3(a). The
most negative �f1st and �f2nd were �17:9 Hz and
�1:97 Hz, respectively. Using the measured f1st=f2nd ratio
of 6.24, we conclude from Eq. (1) that k2nd=k1st ¼ 56:7 in
the investigated distance range, i.e., significantly higher
than the simple prediction

k2nd
k1st

ffi
�
f2nd
f1st

�
2 ffi 40; (4)

valid for a uniform cantilever clamped at one end and free
at the other end [11]. An even larger discrepancy was found
earlier by comparing two independent �fi measurements
with separate excitation at f1st and f2nd [14]. The second
equality in Eq. (4) was, however, nearly satisfied in those
measurements, as well as ours. Since the first equality is
assumed in deriving Eq. (1), the higher k2nd=k1st ratios
must be attributed to the offset of the tip from the cantilever
end, rather than to the relatively small tip mass.
If A2nd is much smaller than A1st, the �f2nd curve shows

a stronger distance dependence than �f1st, as shown in
Fig. 3(b), in agreement with the trend in Figs. 1(b)–1(d).
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FIG. 3 (color online). Distance dependence of both �f1st and
�f2nd measured above a maximum in Fig. 1(d) of Ref. [31]:
(a) A1st ¼ 10 nm and A2nd ¼ 10 nm, (b) A1st ¼ 17:8 nm and
A2nd ¼ 500 pm, (c) A1st ¼ 17:8 nm and A2nd ¼ 25 pm. (d) F
calculated from �f1st in (c) and the corresponding F0. Points in
(c) are calculated using Eq. (2). The origin on the horizontal
scale being set at the minimum of �f1st in (c).
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FIG. 2 (color online). Atomically resolved bimodal DFM im-
ages of a KBr(001) sample obtained at a series of quasiconstant
heights and corresponding line profiles along A-A0. The left and
right maps show �f1st and �f2nd, respectively. Imaging parame-
ters; (a) �f1st ¼ �14:0 Hz, (b) �f1st ¼ �16:0 Hz,
(c) �f1st ¼ �18:0 Hz, and (d) �f1st ¼ �20:0 Hz.; f1st ¼
154021 Hz, A1st ¼ 10 nm, Q1st ¼ 31059, f2nd ¼ 960874 Hz,
A2nd ¼ 50 pm, Q2nd ¼ 6246.
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With a further decrease of A2nd below 0.1 nm, the detected
�f2nd becomes noisier, and deviates more from �f1st.
When �f1st reaches its most negative value, �f2nd is al-
ready positive. FðzÞ was calculated from �f1st in Fig. 3(c),
using Sader’s inversion algorithm [32]: Fig. 3(d) shows F
and F0. The small noise in FðzÞ is amplified by the numeri-
cal differentiation, but is smoothed out by the integration in
Eq. (2). The points in Fig. 3(c), calculated assuming
k2nd=k1st ¼ 56:7, confirm that Eq. (2) accurately describes
the behavior of �f2nd. The most negative value of �f2nd
predicted by Eq. (3) is too large by a factor �30, although
the shapes of the calculated F0 and of �f2nd curves are
rather similar.

For large A1st, by analogy with conventional DFM [27],
�f2nd in Eq. (3) is mainly governed by the short-range
variation of F0 near the closest turning point of the large
oscillation. �f2nd is then much weaker than without oscil-
lation at f1st, but still large enough to be accurately tracked
without having to reduce the scanning speed or to increase
the PLL bandwidth, thus keeping detection noise low. A
large A1st also allows one to map �f2nd closer to the
surface while avoiding instabilities. In separate measure-
ments of �f2nd with excitation at f2nd alone, we found that
force curves reconstructed from measurements for dif-
ferent A2nd essentially coincide [20], as observed on
Si(111)-(7� 7) [14]. However, tip changes occurred be-
fore the most negative �f2nd could be reached. The thresh-
old A2nd value ensuring stable imaging depended on the tip
condition but was significantly larger than 0.1 mm.

In summary, we have demonstrated that stable bimodal
DFM can be performed down to closest tip-sample dis-
tances in an oscillation cycle where the frequency shift of
the second flexural resonance becomes highly sensitive to
short-range interactions, thus enhancing the atomic-
scale contrast without causing instabilities even on a rela-
tively soft material like KBr. The measurements are in
remarkable quantitative agreement with our theoretical
predictions.
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