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We compute analytically, for large N, the probability distribution of the number of positive eigenvalues

(the index Nþ) of a random N � N matrix belonging to Gaussian orthogonal (� ¼ 1), unitary (� ¼ 2) or

symplectic (� ¼ 4) ensembles. The distribution of the fraction of positive eigenvalues c ¼ Nþ=N scales,

for large N, as P ðc; NÞ ’ exp½��N2�ðcÞ� where the rate function �ðcÞ, symmetric around c ¼ 1=2 and

universal (independent of �), is calculated exactly. The distribution has non-Gaussian tails, but even near

its peak at c ¼ 1=2 it is not strictly Gaussian due to an unusual logarithmic singularity in the rate function.
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Random matrix theory (RMT) has played a central role
in various branches of physics since its inception [1].
Through the years, different, seemingly unrelated prob-
lems in physics and mathematics have been linked via
RMT. It is not surprising then that the distributions of
observables associated with random matrices play a very
important role in a variety of physical contexts. Still, after
more than half a century, certain natural questions about
eigenvalue distributions have eluded a thorough treatment,
in spite of their relevance to a broad range of subjects.

As an example, classical disordered systems offer the
ideal environment where RMT ideas and tools may be
applied. Physical systems such as liquids and spin glasses
are known to exhibit a rich energy or free energy landscape
characterized by many extrema (minima, maxima and
saddles) and rather complex stability patterns [2] which
play an important role both in statics and dynamics of such
systems. The stability of a stationary point of an
N-dimensional potential landscape Vðx1; x2; . . . ; xNÞ is de-
cided by the N real eigenvalues of the Hessian matrix
Hij ¼ ½@2V=@xi@xj� which is evidently symmetric. If all

N eigenvalues are positive (negative), the stationary point
is a local minimum (local maximum). If some, but not all,
are positive it is a saddle. The number of positive eigen-
values 0 � Nþ � N, called the index, is a key object of
interest as it determines the number of directions in which
a stationary point is stable.

In many situations, important insights about the system
can be gained by simply assuming that the Hessian is a real
symmetric random matrix drawn from a Gaussian en-
semble. This random Hessian model (RHM) has been
studied extensively in the context of disordered systems
[3], landscape based string theory [4,5] and quantum cos-
mology [6]. In RHM, the fraction of positive eigenvalues
c ¼ Nþ=N is a random variable whose distribution
P ðc; NÞ is our main object of interest in this Letter.
Although in RHM � ¼ 1, it is also of interest to study
the index distribution for other Gaussian ensembles,

namely, the unitary (� ¼ 2) and the symplectic (� ¼ 4).
In this Letter, we study the index distribution for general
�> 0.
Because of the Gaussian symmetry of the ensemble, it is

clear that on average half of the eigenvalues are positive (or
negative), implying hci ¼ 1=2. Thus, the distribution
P ðc; NÞ ¼ P ð1� c; NÞ must be symmetric around c ¼
1=2 with a peak at c ¼ 1=2. Cavagna et al. studied
P ðc; NÞ, for � ¼ 1, using the replica method and some
additional approximations [3]. They argued that for largeN
the distribution has a Gaussian peak around its mean [3]

P ðc; NÞ ’ exp

�
� �2N2

2 lnðNÞ ðc� 1=2Þ2
�

(1)

indicating that the variance hðc� 1=2Þ2i � lnðNÞ=�2N2,
or equivalently hðNþ � N=2Þ2i � lnðNÞ=�2 for large N. In
the opposite limit, near the tail c ¼ 1 (or equivalently c ¼
0) P ð1; NÞ, the probability that all eigenvalues are positive,
was recently computed exactly for large N and for all �
[7],

P ð1; NÞ ’ exp½���N2�; � ¼ 1

4
lnð3Þ: (2)

It is then natural to ask how does the distribution behave in
between, i.e., for 0< c< 1. In particular, the presence of
lnðNÞ term in (1) presents a challenging puzzle: how does
one smoothly interpolate the distribution between the two
limits, the peak and the tails?
In this Letter we resolve this outstanding puzzle by

computing the distribution P ðc; NÞ exactly for large N in
the full range 0 � c � 1 and for all �. Let us summarize
our main results. We show that to leading order for largeN,

P ðc; NÞ ’ exp½��N2�ðcÞ� (3)

where � indicates limN!1 � ln½P ðc; NÞ�=ð�N2Þ ¼ �ðcÞ.
The exact rate function �ðcÞ, symmetric around c ¼ 1=2
and universal (independent of �), is given in (18) for
1=2 � c � 1 and is plotted in Fig. 3. The fact that the

PRL 103, 220603 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

27 NOVEMBER 2009

0031-9007=09=103(22)=220603(4) 220603-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.220603


logarithm of the probability �OðN2Þ for fixed c is quite
natural, as it represents the free energy of an associated
Coloumb fluid of N charges (eigenvalues). The Coulomb
energy of N charges clearly scales as�OðN2Þ. In the limit
c ! 1, we get �ð1Þ ¼ � ¼ lnð3Þ=4 in agreement with (2).
The distribution is thus highly non-Gaussian near its tails.
In the opposite limit c ! 1=2, we find a marginally qua-
dratic behavior, modulated by an unusual logarithmic sin-
gularity

�ðcÞ ’ ��2

2

ðc� 1=2Þ2
lnjc� 1=2j : (4)

The variance computed from our exact formula, hðNþ �
N=2Þ2i � lnðNÞ=��2 for largeN perfectly agrees, for� ¼
1, with Ref. [3]. However, the distribution of Nþ near its
peak is not a Gaussian with variance� lnðNÞ as claimed in
[3], rather our exact result shows that the origin of the
lnðNÞ term is due to the logarithmic singularity associated
with the rate function�ðcÞ itself near c ¼ 1=2. In addition
to obtaining the full distribution P ðc; NÞ thus solving this
challenging puzzle, our Coloumb gas approach also pro-
vides a new method of finding solutions to the singular
integral equation with two disjoint supports. This method
is rather general and can be fruitfully applied to other
related problems in RMT.

Our starting point is the joint distribution of N eigenval-
ues of Gaussian random matrices parametrized by the
Dyson index � [1]

Pð�1; . . . ;�NÞ¼ 1

ZN

e�ð�=2ÞPN
i¼1

�2
i

Y
1�j<k�N

j�j��kj� (5)

where the normalization constant ZN can be computed
using the celebrated Selberg’s integral. For large N, it is
known that [1], ZN � exp½���0N

2� with �0 ¼
ð3þ 2 ln2Þ=8.

The distribution PðNþ; NÞ of the index, i.e., the number
of positive eigenvalues can be expressed in terms of the
joint distribution

PðNþ;NÞ¼ 1

ZN

N
Nþ

� �Z
Rþ

dNþ�
Z
R�

dN�Nþ�e�ð�=2ÞEðf�igÞ

(6)

where the integrals are restricted over configurations with
only Nþ positive eigenvalues and the binomial counts the
different relabellings of the eigenvalues. The function
Eðf�igÞ ¼ P

i�
2
i �

P
j�k lnj�j � �kj can be interpreted as

the energy of a configuration of charged particles located at
f�ig on the real line and PðNþ; NÞ is the partition function
of this fluid at inverse temperature �=2. The distribution
of the fraction c ¼ Nþ=N is then simply P ðc; NÞ ¼
PðcN;NÞ.

In this Coulomb gas picture, Nþ ¼ cN of the total N
charges are confined to the positive real semiaxis. The
charges repel each other via the 2-d Coulomb interaction
(logarithmic) and are also subject to an external confining

potential (parabolic). As a result of these two competing

energy scales, it is easy to see that typically ��Oð ffiffiffiffi
N

p Þ for
largeN [7]. The evaluation of such partition function in the
large N limit is carried out in two steps [7]: (i) a coarse-
graining protocol, where one sums over all microscopic
arrangements of �i compatible with a fixed and normalized
(to unity) charge density function �ð�;NÞ ¼ N�1

P
i�ð��

�iÞ, and (ii) a functional integral over all possible normal-
ized charge density functions, upon using the scaling

�ð�;NÞ � N�1=2�ð�N�1=2Þ where the scaling function
�ðxÞ satisfies R1

�1 �ðxÞdx ¼ 1.
The resulting functional integral over �ðxÞ is then eval-

uated in the large N limit via a saddle point method. In
physical terms, this amounts to finding the equilibrium
density of the fluid (minimizing its free energy) under the
competing interactions (Coulomb repulsion and quadratic
confinement) and the external constraint (Nþ ¼ cN parti-
cles kept always on the positive semiaxis). This con-
strained Coulomb gas approach has proven useful in a
number of different contexts such as Gaussian and
Wishart extreme eigenvalues [7–9], nonintersecting
Brownian interfaces [10], quantum transport in chaotic
cavities [11], statistics of critical points in Gaussian land-
scapes [12,13], bipartite entanglement [14] and also in
information and communication systems [15].
Using the above approach one gets, to leading order in

large N,

P ðc; NÞ /
Z

D½��e�ð�=2ÞN2Sc½�� (7)

with the action Sc½�� given by:

Sc½�� ¼
Z 1

�1
dxx2�ðxÞ �

Z 1

�1

Z 1

�1
dxdx0�ðxÞ�ðx0Þ

� lnjx� x0j þ A1

�Z 1

�1
dx�ðxÞ�ðxÞ � c

�

þ A2

�Z 1

�1
dx�ðxÞ � 1

�
(8)

where A1 and A2 are Lagrange multipliers enforcing the
fraction c of positive eigenvalues and the normalization of
�, and �ðxÞ is the Heaviside step function.
The equilibrium fluid density �?ðxÞ, which minimizes

the action or the free energy, is obtained by the saddle point
equation �Sc½��=�� ¼ 0, resulting in the integral equation

x2 þ A1�ðxÞ þ A2 ¼ 2
Z 1

�1
�?ðyÞ lnjx� yjdy: (9)

By taking one derivative with respect of x, we obtain, for
x � 0,

x ¼ Pr
Z

dy
�?ðyÞ
x� y

; (10)

where Pr stands for the Cauchy’s principal part. It turns out
that there exists a closed formula, due to Tricomi [16], for
the solution of such integral equations provided the solu-
tion has a single support. This is indeed the case in the two
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limiting situations c ¼ 1=2 and c ¼ 1. For c ¼ 1=2, the
solution is given by the celebrated Wigner’s semicircle,

�?ðxÞ ¼ 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� x2

p
with � ffiffiffi

2
p � x � ffiffiffi

2
p

. In the opposite

limit c ¼ 1, all the eigenvalues are on the positive side and
one again obtains a single-support solution [7], �?ðxÞ ¼
ð2�Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffiffiffi

8=3
p � xÞ=x

q
½ ffiffiffiffiffiffiffiffi

8=3
p þ 2x� for 0 � x � ffiffiffiffiffiffiffiffi

8=3
p

.

In contrast, for 1=2< c< 1, the solution generally con-
sists of two disjoint supports: a blob of ð1� cÞN negative
eigenvalues and a blob of cN positive eigenvalues (see
Fig. 1). Finding this two-support solution thus poses the
principal technical challenge for 1=2< c< 1. We have
succeeded in finding this two-support solution exactly by
iterating the Tricomi formula for single-support solution
twice, the details of which will be reported elsewhere [17].
Our main result is that for all 1=2 � c � 1,

�?ðxÞ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL� xÞ

x
ðxþ L=aÞðxþ ð1� 1=aÞLÞ

s
(11)

where a, L parametrize the support of the solution x 2
½�L=a;�Lð1� 1=aÞ� [ ½0; L� where �?ðxÞ> 0. They are
implicitly given as functions of c by the equations:

Z 1

0
dy

ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

y

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ yþ ða� 1Þ

a2

s
¼ �c

2

�
1� ða� 1Þ

a2

�
(12)

and

L ¼ a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � aþ 1

p : (13)

It is easy to check that one recovers the correct single-
support solutions in the limiting situations c ¼ 1=2 and
c ¼ 1. The density �?ðxÞ for different c is given in Fig. 1.
We have also verified this analytical prediction numeri-
cally by two different methods (see Fig. 2): direct diago-
nalization of small matrices and also by Monte Carlo
simulation of the Coloumb gas [17].

Using this saddle point solution in (7), we get P ðc; NÞ �
expð� �N2�ðcÞÞ, where the rate function �ðcÞ ¼

ð1=2ÞSc½�?� ��0, �0 ¼ ð3þ 2 ln2Þ=8 coming from the
normalization ZN . To evaluate the saddle point action
Sc½�?� we next need to evaluate the single and double
integral over �?ðxÞ in (8). The double integral can be
written in terms of a simple integral after multiplying (9)
by �? and then integrating over x. This gives

�ðcÞ ¼ � 3

8
� lnð2Þ

4
þ 1

4
hx2i � 1

4
A1c� 1

4
A2; (14)

where the average h�i is done with the measure �?ðxÞ.
The Lagrange multipliers A1 and A2 can be obtained

from (9) upon setting x ¼ L > 0 and x ¼ �L=a < 0

L2 þ A1 þ A2 ¼ 2hlnðL� xÞi; (15)

L2=a2 þ A2 ¼ 2hlnðxþ L=aÞi: (16)

It turns out that the averages on the right-hand side can be
simplified by first introducing a pair of functions

Wð�ÞðxÞ¼x�1

x
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx	LÞ

x
ðx�L

a
Þ½x�ð1�1

a
ÞL�

s
(17)

defined, respectively, for x > L and x > L=a. One can
show [17] that they are essentially the moment generating
functions of �
ðxÞ. The averages in (15) and (16) can then
be expressed as simple integrals over Wð�ÞðxÞ. Skipping
details [17], we obtain the following explicit expression for
the rate function for 1=2 � c � 1,

�ðcÞ ¼ 1

4
½L2 � 1� lnð2L2Þ� þ ð1� cÞ

2
lnðaÞ

� ð1� cÞða2 � 1Þ
4a2

L2 þ c

2

Z 1

L
WðþÞðxÞdx

þ ð1� cÞ
2

Z 1

L=a
Wð�ÞðxÞdx: (18)

Equation (18) is the principal result of this Letter. It is
again easy to check that in the two limits c ¼ 1=2 and c ¼
1, one recovers correctly�ð1=2Þ ¼ 0 and�ð1Þ ¼ ðln3Þ=4.
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FIG. 1 (color online). The density of eigenvalues �?ðxÞ
[Eq. (11)] for c ¼ 1=2 (red dotted line), 3=4 (green dashed lines)
and 0.995 (blue solid lines).
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FIG. 2 (color online). Analytical density �?ðxÞ (11) for c ¼
0:6 (solid black lines) together with results from (i) (red filled
circles) numerical diagonalization of 106 matrices of size 20�
20, where only samples having 12 positive eigenvalues were
retained for the statistics (c ¼ 0:6), and (ii) (blue filled triangles)
Monte Carlo simulations of the Coulomb fluid with N ¼ 50
particles.
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For arbitrary c, the integrals have to be evaluated numeri-
cally. The rate function�ðcÞ is plotted for 0 � c � 1 in the
top panel of Fig. 3. It is symmetric around c ¼ 1=2 with a
minimum at c ¼ 1=2 and grows monotonically from
�ð1=2Þ ¼ 0 to �ð1Þ ¼ ðln3Þ=4. To see how �ðcÞ behaves
near its minimum c ¼ 1=2, we make a perturbation expan-
sion of (18) setting c ¼ 1=2þ � with � > 0 small. Since
for c ¼ 1=2, a ¼ 1, we first expand (12) setting a ¼ 1þ
�. To leading order we get� � ��= lnð1=�Þ. Inserting this
result in (18) followed by straightforward expansion gives
(4). Using this expression of �ðcÞ in (3), one can then
easily compute the variance of Nþ ¼ cN

�ðNÞ ¼ N2hðc� 1=2Þ2i ’ 1

��2
lnN þOð1Þ (19)

which, for � ¼ 1, agrees with the asymptotic result in [3].
However, the logarithmic growth of the variance is evi-
dently due to the logarithmic singularity in the rate func-
tion �ðcÞ itself in (4) and the index distribution is strictly
not Gaussian near c ¼ 1=2.

We also remark that for � ¼ 2 it is possible to find an
exact formula for the variance at finite N [17] based on the
Andrejeff formula and/or orthogonal polynomials with
discontinuous weights [18]. Using this formula we have
evaluated the variance for all finite N and found that the
leading growth is precisely �ðNÞ � lnðNÞ=2�2 in agree-
ment with the asymptotic result in (19), they differ only for
subleading terms in N [see Fig. 3 (bottom)].

The work presented here can be generalized in several
directions. Our method to find explicitly two-support so-
lutions to singular integral equation is quite general and
can be applied to other problems. For example, one can
compute the distribution of the number of eigenvalues
bigger than a fixed value z. This is particularly relevant
for Wishart matrices that play an important role in multi-
variate data analysis [9]. Our method can also be applied to
more exotic ensembles of random matrices that arise in
connection with 2-d quantum gravity [19]. It would also be

interesting to investigate if the logarithmic growth of the
variance of the index is universal and holds even for non-
Gaussian ensembles.
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FIG. 3 (color online). (Left) The large deviation function �ðcÞ; (Right) the variance of the index as a function of lnðNÞ for � ¼ 2
(dotted line, exact finite N formula; solid line, large N). A linear fit for the former gives �ðNÞ ’ 0:176þ 0:052 lnN with the prefactor
0.052 in good agreement with the leading theoretical prefactor ð2�2Þ�1 ’ 0:051 for the large N result.
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