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We propose a quantum key distribution protocol based on a quantum retrodiction protocol, known as

the Mean King problem. The protocol uses a two way quantum channel. We show security against

coherent attacks in a transmission-error free scenario, even if Eve is allowed to attack both transmissions.

This establishes a connection between retrodiction and key distribution.
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Introduction.—Quantum key distribution (QKD) proto-
cols allow two parties, traditionally called Alice and Bob,
to generate a secret key which enables them to communi-
cate secretly via onetime pad encryption. There are QKD
protocols that guarantee the security of the key against an
eavesdropper who is capable of implementing arbitrary
quantum operations (coherent attacks) [1–3].

After the execution of a QKD protocol, Alice and Bob
should share an identical and random bit string which is
unknown to a potential eavesdropper Eve. If one forgets for
a moment about the secrecy of the bit string, the goal in a
QKD protocol is that one of the communicating partners
infers a bit value corresponding to a measurement outcome
obtained or a state prepared by the other. In an optimal
protocol, one would request that this is possible in every
run of the protocol.

A similar problem, the Mean King problem, has been
proposed by Vaidman, Aharonov, and Albert in the context
of the retrodiction of a measurement result of a spin
1
2 -particle [4]. Alice in this setting has to guess the outcome

of a measurement performed by Bob without knowing the
measurement basis used. The first proposal to use this setup
in a quantum cryptographic context appeared in [5], but a
security proof accounting for an arbitrary attack on both
quantum channels was not given. In this Letter, we show
that there are solutions to the Mean King problem which
guarantee the security of these measurement results against
an eavesdropper in a stronger scenario thus establishing the
connection between retrodiction and security. In addition,
the proposed protocol generates a bit of raw key in every
single run.

Setting and result.—
The Mean King retrodiction problem.—The retrodiction

problem can be stated as a quantum gamewith two players.
One player, Alice, wins the game if she can guess a
measurement outcome obtained by the other player, Bob.
Both of them agree beforehand on a Hilbert space H of
dimension d and a set of dþ 1 orthonormal bases of this
Hilbert space f�bðiÞ; i ¼ 1; . . . ; d; b ¼ 1; . . . ; dþ 1g.
Here, �bðiÞ denotes the ith basis vector of the bth basis.

Alice starts the game by preparing a maximally en-
tangled state � 2 H �H and sends the second system

to Bob. He performs a projective measurement in a ran-
domly chosen basis b 2 f1; . . . ; dþ 1g, but keeps this
choice and his measurement result i secret. After Bob
has returned the resulting eigenstate of his measurement
to Alice, she holds the state (conditional on Bob obtain-
ing i)

�̂ bðiÞ ¼ ½1 � j�bðiÞih�bðiÞj��: (1)

After Alice has performed a final measurement fFxg on this
state, obtaining a classical result x, all quantum informa-
tion is discarded. In the last step, Bob reveals his choice of
basis b and depending on this value and her measurement
result x, Alice has to guess Bob’s measurement outcome i.
Bob can make sure that Alice has not kept an entangled
quantum copy, by making her give the answer in the form
of a program on his classical computer. We note that the
precise form of the result x is not important, and we might
think of it as a ðdþ 1Þ-tupel x ¼ ðxð1Þ; . . . ; xðdþ 1ÞÞ in-
dicating to Alice that she should guess i ¼ xðbÞ if the basis
b was chosen by Bob. We refer to x as a guessing function.
As there are d different possible measurement outcomes
for each of the dþ 1 measurement bases, the set X of
possible guessing functions has ddþ1 different elements. A
successful strategy for Alice consists of a maximally en-
tangled state � and a measurement fFxg such that the
probability for a wrong guess is zero, which means that

tr½Fxj�̂bðiÞih�̂bðiÞj� ¼ 0, unless xðbÞ ¼ i and that she can
make a guess in every round, implying the normalization
condition

P
Fx ¼ 1.

The existence of such a strategy has been studied in the
case of mutually unbiased bases (MUBs) [4,6]. In [7], it
has been shown that weaker conditions are sufficient for
constructing a winning strategy. A set of k bases only has to
be nondegenerate, meaning that the span of the projectors
j�bðiÞih�bðiÞj is kðd� 1Þ þ 1 dimensional and has to
admit a classical model. Here, a set of k bases is said to
admit a classical model if there exists a probability distri-
bution of k variables, each taking d values, such that its
marginals equal the probability distributions of the joint
probabilities pabði; jÞ ¼ 1

d jh�bðiÞj�aðjÞij2 for all pairs of

bases.
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In our scenario with k ¼ dþ 1, nondegeneracy implies
also that the projectors span the space of all Hermitian
operators on H . Of course, dþ 1 mutual unbiased bases
(MUBs) are an example of a set of bases exhibiting these
properties [7].

The QKD protocol.—We assume a setting for the Mean
King problem in which the set of bases is nondegenerate
and Alice has a successful strategy that is maximal in the
sense of incorporated measurement projectors (see bel-
low). In each run, there will be n instances of the Mean
King problem, and we use a vector arrow to indicate
n-tuples of choices, outcomes, etc. It is irrelevant for our
analysis whether the steps are carried out sequentially for
each instance, or for the full block of n instances simulta-
neously. Note that only Alice is required to posses a
quantum memory.

The protocol is carried out in the following way:
(1) Initially, an entangled state �n of n pairs is generated
and distributed to Alice and Bob. This process is vulner-
able to attack, but they proceed as if �n ¼ j��nih��nj
consists of n copies of the pure state used for the Mean
King problem. (2) Bob chooses at random n measurement

bases ~b, performs the projective measurement with basis
bk on the kth particle, obtaining the results ik, and sends
back the corresponding eigenstate. Altogether, he returns

�~ið ~bÞ ¼
N

n
k¼1 �ikðbkÞ, without disclosing ~i or ~b. (3) Alice

performs her measurement fFxg on each of the returning
particles and the corresponding one in her storage, obtain-
ing as a result an n-tuple ~x of guessing functions. (4) After
Alice announces that she finished the last of her measure-

ments, Bob publishes his choice of bases ~b from which
Alice infers i0k ¼ xkðbkÞ.

Without Eve’s interaction, this will produce an identical

string ~i0 ¼ ~i of d digits because you can regard it as a Mean
King game between Alice and Bob. In order to test for the
presence of an eavesdropper, Alice and Bob will randomly
select some particles k and check for the agreement i0k ¼ ik
in these instances and accept if they never find a deviation.

Security.—The transmission-error free scenario for the
security analysis assumes that Alice and Bob find agree-
ment with probability 1, i.e., that a potential attacker does
not risk the introduction of any errors at all—also that there
are no spontaneous transmission errors. Of course, a full
analysis would have to allow for errors, so the proof of
security in this scenario is only a proof of principle.

In our setting, Eve can interact at different stages. First,
she may provide the initial state, possibly keeping a system
of her own entangled with the distributed pairs. Then, she
may interact with the states that Bob returns to Alice in a
coherent way and finally make a joint measurement on her
system. We even allow choices violating time ordering,
since we analyze whole blocks simultaneously.

We show in the next section that if Eve’s actions do not
interfere with the perfect key agreement, which Alice and
Bob can test in principle, then her final conclusion will be

uncorrelated with the key, i.e., she will have learned noth-
ing about it.
Proof.—A key notion in the Mean King problem is the

idea of safe vectors [7]. All vectors in the range of a
measurement operator Fx must be safe vectors, if Alice
does not want to risk a wrong guess. Together with a
convenient normalization, we call �x a safe vector for
guessing function x if

h�xj�̂bðiÞi ¼ �xðbÞ;i 8 x; i; b (2)

with �̂bðiÞ from Eq. (1). It is shown in [7] that for a
nondegenerate choice of bases, such a vector exists for
every guessing function x.
If Alice chooses a measurement fFxg that incorporates

all of the projectors pðxÞj�xih�xj, pðxÞ � 0, we call her
strategy maximal. We now show that an operator that
possesses all the �x as eigenvectors has to be a multiple
of the identity.
Lemma 1.—Let H be a Hilbert space of dimension d

and f�bðiÞg a set of dþ 1 nondegenerate ONBs and let
Alice have a maximal successful strategy. If an operator
E: H �H ! H �H fulfills E�x ¼ ex�x for all safe
vectors�x solving (2), then ex � e is constant and E ¼ e1.
Proof.—At first, from

P
xpðxÞj�xih�xj ¼ 1, we can con-

clude that span Rf�x; x 2 Xg ¼ H �H holds. Since the
number ddþ1 of guessing functions is larger than the maxi-
mal dimension, d2, of H �H and there is a safe vector
�x for every guessing function [7], we can ask for a
decomposition of a given safe vector �x in a set of linearly
independent safe vectors f�yg, with �x � �y and �x ¼P

y�y�y, such that �y � 0, 8 y. One possibility is to

choose the three safe vectors �u, �v, �w, whose guessing

functions fulfill for two bases b0, ~b 2 f1; . . . ; dþ 1g, b0 �
~b with the relations

xðb0Þ ¼ vðb0Þ ¼ i0 � j0 ¼ uðb0Þ ¼ wðb0Þ
xð~bÞ ¼ uð~bÞ ¼ ~i � ~j ¼ vð~bÞ ¼ wð~bÞ
xðbÞ ¼ uðbÞ ¼ vðbÞ ¼ wðbÞ; b =2 f~b; b0g:

Then, the decomposition is given by �x ¼ �u þ �v � �w,
which can be seen by evaluating the defining Eq. (2) for all
cases. If �x, �u, �v, �w are eigenvectors of the operator E,
it follows from the uniqueness of the decomposition in
linearly independent vectors and

E�x ¼ Eð�u þ �v � �wÞ ¼ eu�u þ ev�v � ew�w (3)

E�x ¼ exð�u þ �v � �wÞ (4)

that �u, �v, �w belong to the same eigenvalue.
Now pick two arbitrary safe vectors, �x, �y with x � y,

which by assumption belong to the eigenvalues ex and ey.

Since x�y, there exist 1�m�dþ1 bases bk with xðbÞ �
yðbÞ. Now choose a sequence of guessing functions ðzlÞml¼0

with z0ðbÞ ¼ xðbÞ 8 b and zlþ1ðbÞ ¼ zlðbÞ 8 b � blþ1
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and zlþ1ðblþ1Þ ¼ yðblþ1Þ which accounts for zmðbÞ ¼
yðbÞ. With the paragraph above, it follows that ezl ¼ ezlþq

for all l and therefore especially ex ¼ e for all guessing
functions x since x and y were arbitrary.

Using that span f�xg ¼ H �H holds, we can find for
all � 2 H �H a set of linearly independent f�xg such
that� ¼ P

x�x�x with �x � 08 x. This shows that every
� 2 H �H is an eigenvector of E and we can conclude
that E ¼ e1. j

The key to showing security for blocks of length n is to
consider these n steps as part of a single instance of a Mean
King retrodiction game in a larger Hilbert space with more
bases. By tensoring, we get ðdþ 1Þn measurement bases

f� ~bð~iÞ ¼
N

n
l¼1 �blðilÞg on Bob’s side in dn dimensions.

The n entangled states Alice sends to Bob can be consid-
ered as an entangled state on ðH �H Þ�n, and an appar-
ently successful strategy is the n times execution of her
maximal strategy for the single run fFxg obtaining the
guessing functions ~x ¼ ðx1; . . . ; xnÞ. The resulting vectors
of the form �~x ¼ N

n
l¼1 �xl we call safe product vectors

since after rearranging of the tensor factors

h�~xj�̂ ~bð~iÞi ¼
Yn
l¼1

h�xl j�̂blðilÞi ¼
Yn
l¼1

�xlðblÞ;il ;

they satisfy the constraint (2).
Of course, the set of product measurement bases

is no longer nondegenerate, however, because

dimfspanR½j� ~bð~iÞih� ~bð~iÞj�g ¼ d2n holds they still span

the space of all Hermitian operators on H �n, the same is
true for the set of all safe product vectors f�~xg. The safe
product vectors �~x inherit the decomposition property
from the single safe vectors �x, by applying the property
to one of the tensor factors. So every safe product vector�~x

can be decomposed into three linearly independent safe
product vectors �~u, �~v and � ~w with �~x ¼ �~u þ �~v � � ~w.
From this point, the argument for the operator E follows
along the same line as in the single execution case: First,
for every two different safe product vectors �~x and �~y, we

can find a sequence of guessing functions that via Eq. (4)
ensure the eigenvalues to be equal. Second, since the span
of all safe product vectors generates againH �H , which
is therefore an eigenspace of the operator E to one single
eigenvalue, E is a multiple of the identity. We get

Lemma 2.—Let f�~xg be the set of all safe product vectors
for the n-times execution of a retrodiction problem with
dþ 1 nondegenerate measurement bases f�bðiÞg on a
Hilbert space H of dimension d for which Alice has a
maximal successful strategy. If E: ðH �H Þ�n ! ðH �
H Þ�n fulfills E�~x ¼ e~x�~x for all �~x, then e ¼ e~x for all x
and E ¼ e1 holds.

We want to analyze the security of the protocol in a
transmission-error free scenario for a full coherent attack
on both quantum channels. This means that Eve might
eavesdrop on the communication by replacing the trans-

mission line from Alice to Bob by an arbitrary quantum
channel, U, and that her operation, V, on the feedback
channel might be connected to the outcome of this trans-
formation via an additional quantum channel.
As a further generalization, we even give the control of

the source of the maximally entangled state to Eve (see
FIG. 1). In this scenario, we prove that if Alice and Bob
observe perfect correlations of their data, or more pre-
cisely, if Eve chooses an operation that does not cause
any errors, the resulting key is perfectly secure.
Lemma 2 shows that the n-time execution of a retro-

diction game can be viewed as a one-time execution of
retrodiction game on a larger Hilbert space. Because of
this, we can prove the security of the n times execution of
the single qudit protocol by proving the security of a
protocol where Alice and Bob use a dn-dimensional maxi-
mally entangled state initially and the product bases and
measurements defined in Lemma 2.
Now suppose Eve prepares the state� 2 H �H � E.

Using Um;l ¼ Xm
d Z

l
d the elements of the generalized Pauli-

group of a d-dimensional Hilbert space [8], we can decom-
pose this state in the maximally entangled basis on the first
two tensor factors and write it as

�ABE ¼ X
m;l;�

pm;l�ð1A �Um;l � 1EÞj��ni � je�i

¼ X
�

ð1A � Û� � 1EÞj��ni � je�i;

where the operators Um;l have the property of generating

all basis states of the maximally entangled basis if they are
applied in turn to the second tensor factor of j��ni [9]. For
the purpose of clarity, the Um;l and the pm;l;� are absorbed

into the Û�. By measuring this state in the product bases ~b

and obtaining the result ~i, Bob projects onto the state

j� ~b;~ii ¼
X
�

ðÛT
� � 1B � 1EÞj�̂ ~bð~iÞi � je�i:

Here, we used that ð1 � ÛÞj�i ¼ ðÛT � 1Þj�i holds for

an operator Û 2 BðH Þ and the maximally entangled state
j�i 2 H �H . Eve might implement an arbitrary quan-
tum channel, V, acting on her subsystem and the eigenstate

FIG. 1. Full coherent attack on the protocol.
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of the measurement Bob is sending back to Alice. We now analyze the result of this operation:

V½j� ~b;~iih� ~b;~ij� ¼
X
�;�0;l

ðÛT
� � VlÞj�̂ ~bð~iÞije�ih�̂ ~bð~iÞjhe�0 jðÛT

�0 � VlÞ? � jelihelj: (5)

In order to avoid detection, Eve must restrict her attack to
quantum channels that do not disturb the measurement
statistics observed by Alice and Bob. Even after Eve has
interfered with the quantum systems, Alice should guess
the right measurement outcome if no transmission errors
are taken into account. This means that the states received
by Alice still respond to the same safe vectors �~x as before
so the condition

tr fj�~xih�~xjtrEðV½j� ~b;~iih� ~b;~ij�Þg ¼
Yn
l¼1

�xlðblÞ;il

must be respected for all guessing functions ~x, bases ~b and
measurement results ~i. Expanding the Kraus operators Vl

in a standard basis

Vl ¼
X

�;�;�;�

vl���� j��ih��j;

inserting this expression in Eq. (5) and tracing out Eve’s
system we obtain the state controlled by Alice before her
final measurement

�A
~b;~i
¼ X

l;k

Elkj�̂ ~bð~iÞih�̂ ~bð~iÞjE?
lk (6)

where we defined the operators Elk as

Elk ¼
X
�

�
ÛT

� �
�X
��

vl�k�e�
j�ih�j

��
:

Using (6), we find that the probability of measuring one of
the safe product vectors �~x for a given tuple of measure-
ment results ~i in a certain product bases ~b is given by

pð�~x; ~b; ~iÞ ¼ trðj�~xih�~xj�A
~b;~i
Þ ¼ X

l;k

jh�~xjElkj�̂ ~bð~iÞij2:

From the constraint pð�~x; ~b; ~iÞ ¼ �~xð ~bÞ;~i, we can conclude
that h�~xjElkj�̂ ~bð~iÞi has to be valid for every l, k, ~b, ~i, and ~x.
The safe product vectors �~x are unique one-dimensional
projectors and Ekl cannot have all the j�̂ ~bð~iÞi as eigenvec-
tors if Eik � �kl1 holds. This leads to the constraint that in
order to avoid detection, the operators Elk corresponding to
Eve’s attack have to fulfill the eigenvalue equations

E?�~x ¼ ��lkx�~x

for all �~x. With Lemma 2, we can conclude that the
operators are of the form Ekl ¼ �kl1 independent of the
measurement result ~x that Alice obtains.
The state under Eve’s control after the transmissions is

given by

�E
final ¼ trABðV½j� ~b;~iih� ~b;~ij�Þ

¼ X
l;k;k0

trAB½El;kj�̂ ~bð~iÞih� ~bð~iÞjE?
l;k0 � jkihk0j � jelihelj�

¼ X
l;k;k0

�k;l ��k0;ljkihk0j � jelihelj:

Hence, �E
final is independent of Bob’s choice of bases

~b, his

measurement result ~i, and Alice’s guessing function ~x.
Subsequently, Eve cannot infer any information about the
exchanged key if she wants to stay undetected. This shows
the security of the proposed protocol in a transmission-
error free scenario.
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