
Sampling from the Thermal Quantum Gibbs State and Evaluating Partition Functions
with a Quantum Computer

David Poulin1 and Pawel Wocjan2
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We present a quantum algorithm to prepare the thermal Gibbs state of interacting quantum systems.

This algorithm sets a universal upper bound D� on the thermalization time of a quantum system, where D

is the system’s Hilbert space dimension and � � 1
2 is proportional to the Helmholtz free energy density.

We also derive an algorithm to evaluate the partition function of a quantum system in a time proportional

to the system’s thermalization time and inversely proportional to the targeted accuracy squared.
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The partition function at inverse temperature � is of
central interest in statistical physics because all thermody-
namic variables such as energy, heat capacity, entropy, and
correlation functions can be derived from it. For interacting
systems, the partition function involves a sum over an
exponential number of terms, so it cannot be computed
exactly except in few special cases. Thus, approximation
schemes are required to estimate these physical quantities
numerically.

Monte Carlo simulations are often the method of choice
to evaluate thermodynamic quantities. When the system is
classical, system configurations x can be generated ran-

domly according to the thermal distribution PrðxÞ ¼ e��HðxÞ
Zð�Þ

by a suitable Markov chain. Sampling from this distribu-
tion provides an estimate of the partition function and other
quantities of interest. The running time of the algorithm is
determined by the rate of convergence of the Markov chain
and the number of samples needed to lower the statistical
fluctuations below a desired accuracy. The method of
Ref. [1] uses a quantum computer to prepare a purification
of the thermal distribution in time that scales like the
inverse of the square root of the spectral gap. Building on
this work, one of us has recently shown that a quantum
computer also achieves a quadratic speed-up with respect
to relative accuracy for evaluating partition functions [2].

Monte Carlo simulations can also be employed for
quantum systems using standard mapping between
N-dimensional quantum systems to ðN þ 1Þ-dimensional
classical systems. However, frustrated and fermionic sys-
tems are affected by the sign problem [3] which leads to an
exponential blowup of the statistical fluctuations of the
sample. For this reason, Monte Carlo simulations are un-
reliable for these systems.

This Letter presents two complementary results. First,
we demonstrate a quantum algorithm to prepare the ther-

mal Gibbs state �ð�Þ ¼ e��H

Zð�Þ of any locally interacting

quantum system, where Zð�Þ ¼ Trðe��HÞ is the partition
function. The problem of thermalizing a quantum system
with a quantum computer was first raised in [4] where heu-

ristic methods were proposed, but no rigorous upper
bounds have been derived. Our results set a universal upper
boundD� for the thermalization time of a quantum system,
whereD is the system’s Hilbert space dimension and� � 1

2

is proportional to the Helmholtz free energy density.
Second, we present a quantum algorithm to evaluate the

partition function of quantum systems within relative ac-
curacy �. The complexity of the algorithm scales like the
inverse of �2 (� when the system is classical) and propor-
tionally to the thermalization time of the system. This
algorithm is not affected by the sign problem and works
for any locally interacting quantum system. It is a full
quantum generalization of the algorithm presented in
[1,2] for the evaluation of partitions functions of classical
systems. The combination of our two algorithms yields a
universal upper bound for the time needed to evaluate a
partition function with a quantum computer.
We consider a system composed of n interacting d-level

particles with a k-local Hamiltonian H ¼ P
jhj, where

each term hj has a bounded norm and acts on at most k

particles (k is a constant). It is one of quantum information
science’s most celebrated result that k-local Hamiltonians
can be simulated efficiently on a quantum computer. More
precisely, for those Hamiltonians, the time evolution op-
erator UðtÞ ¼ e�iHt can be approximately expressed as the
product of a sequence of discrete one- and two-qubit gates,
and the number of gates scales essentially linearly with the
duration t of the simulated process and polynomially with
the system size n [5–8].
Given the system’s Hamiltonian and a temperature 1=�,

we call a thermalization process any (possibly time-
dependent) local Hamiltonian on the system and a bath
(of size scaling polynomially with the number of particles
in the system) that generates, after time T, a unitary trans-
formation V such that

Tr bath

�
V

�
I

D
� j0ih0jbath

�
Vy

�
¼ �ð�Þ; (1)

or more generally that this equation holds within some
accuracy �. The system’s thermalization time Tthð�Þ is
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the duration of the shortest thermalization process. Note
that in our definition, the temperature dependence is en-
coded in the details of V instead of in the initial state of the
bath as one would expect physically. This is to rule out
trivial thermalization processes where the bath is prepared
in the desired state �ð�Þ and V simply swaps the system
and the bath. Nevertheless, the temperature dependence of
the thermalization process we will present could equally
well be encoded in the initial state of the bath with a simple
modification to our algorithm.

Thermalization processes that occur in nature constitute
of local interactions (all forces of nature are two-body), so
can be efficiently simulated by a quantum computer, i.e., in
a time proportional to the duration of the thermalization
process [5–8]. In what follows, we present a universal
thermalization process and characterize its complexity.
Then, we show how to use this—or any other—thermal-
ization process to evaluate partition functions with a quan-
tum computer.

For sake of analysis, we shift the system’s Hamiltonian
by a constant E� to ensure that H is positive. This changes

the partition function by a factor e��E�
that we keep track

of implicitly: we henceforth assume 0<H < Emax where
Emax is a known (polynomial) upper bound of the
Hamiltonian. We denote the eigenvalues and eigenvectors
of the Hamiltonian Hjai ¼ Eajai.

We will make extensive use of the system’s time evolu-
tion operator with t ¼ �=ð4EmaxÞ, that we simply denote
U. As mentioned above, U cannot be simulated exactly
with a quantum computer. Instead, we can produce ~U,
which is a good approximation to it. This will unavoidably
limit the accuracy of our thermalization process and of the
estimated partition function. Indeed, defining the effective
Hamiltonian ~H ¼ � i

t log
~U (by definition of t, there is no

multivalue problem), our algorithms will prepare the Gibbs

state ~�ð�Þ and evaluate the partition function ~Zð�Þ asso-
ciated with ~H, notH. However, we show in Appendix A of
the supplementary material [9] that an accurate simulation
kU� ~Uk � � leads to an accurate effective Hamiltonian
kH� ~Hk � KEmax� (where K is a small constant). This,
in turn, implies an accurate estimate of the partition func-

tion jZð�Þ � ~Zð�Þj � 2K�Emax�Zð�Þ (see Appendix B
in the supplementary material [9]) and a high fidelity Gibbs
state F½�ð�Þ; ~�ð�Þ� � 1� K0�Emax� (see Appendix C in
the supplementary material [9]).

Because the exact time required to simulate U within
accuracy � depends on the details of the system, we mea-
sure the complexity of our algorithms in terms of the
number of times they need to implement U. Hence, the
true running time of our algorithms have an additional
arbitrarily weak dependence [6] on the targeted accuracy
� of the partition function and Gibbs state.

Our algorithm requires a cooling schedule 0 ¼
�0 <�1 < . . .<�‘ ¼ � such that Fk :¼ Zð�kþ1Þ

Zð�kÞ � 1=2

for all k. Writing Fk ¼ P
a
e��kEa

Zð�kÞ e
���kEa ¼ he���kHi�k

where��k ¼ �kþ1 � �k, we see that a polynomial-length

cooling schedule can always be constructed by choosing
��k ¼ logð2Þ=Emax, which implies a cooling schedule of
length ‘ ¼ Emax�= log2, but shorter schedules can be used
in most cases. Notice how the choice of a lower bound on
the Hamiltonian E� affects these ratios. For this reason, it is
desirable that �E� be as close as possible to the true
ground state energy of the system to decrease the length
of the cooling schedule.
The partition function is expressed as a product

Z ð�kÞ ¼ Zð�0ÞF0F1 . . .Fk�1 (2)

and will be computed by evaluating each fraction and using
the fact that Zð�0Þ ¼ D, the dimension of the system’s
Hilbert space. If each ratio Fk is evaluated within accuracy
�
‘ , the resulting relative error on Zð�Þ will be Oð�Þ. Our
universal thermalization process requires evaluating the Fk

sequentially: the fraction Fk is evaluated from the Gibbs
state �ð�kÞ, and the value of Zð�kÞ is needed to prepare
�ð�kþ1Þ.
Our method makes use of quantum phase estimation

(QPE) [10,11]. This is a transformation that operates on
the ‘‘system’’ register and an m-qubit ‘‘energy’’ register
initialized to the state j0mi as follows:

Here, W denotes the Hadamard transform Wj0mi ¼
2�ðm=2ÞP2m�1

r¼0 jri and FT denotes the Fourier transform.

The central gate applies r repetitions of the time evolution
operatorU to the system register, where r is dictated by the
state of the lower register. Since r can be as large as 2m �
1, the running time of this procedure is 2m. The labelE runs

over the discretization of the interval ½0; 8EmaxÞ, i.e. E 2
8Emax

2m � f0; 1; . . . ; 2m � 1g. The function fðE; EaÞ is the dis-
crete Fourier transform of gðrÞ ¼ e�itEar, so it is highly
peaked around the value E ¼ Ea, i.e.,

jfðE; EaÞj2 ¼
sinðE�Ea

Emax

�
4 2

mÞ
sinðE�Ea

Emax

�
4Þ

:

Thus, QPE essentially measures the energy of the system
and writes it down on the energy register, up to some
fluctuations associated to the width fðE; EaÞ.
Let us first describe our algorithm to prepare Gibbs

states by ignoring these fluctuations and return to them
later. In fact, our algorithm will prepare purified marked
Gibbs states

j�ki ¼
X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e��kEa

Zð�kÞ

s
jai � j�ai � jEai (3)

that are defined on one system register, one scratchpad
register, and one energy register. The term ‘‘purified’’
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refers to the fact that the state j�ki is pure and has a
reduced system density matrix equal to the Gibbs state at
inverse temperature �k. The term ‘‘marked’’ means that
the energy register encodes the energy of each system
eigenvalue.

To obtain the state j�0i, we must first prepare the system
and scratchpad in any maximally entangled state

D�ð1=2ÞP
ajai � j�ai and then apply QPE to the system

register (ignoring fluctuations of f). The finite temperature
quantum Gibbs state j�ki is obtained from j�0i and an
ancillary qubit initially in the state j0i that we rotated by an
angle �ðE;�kÞ ¼ arcsinðe�ð�kE=2ÞÞ conditioned on the en-
ergy register, resulting in

j�ki ¼ D�ð1=2ÞX
a

jai � j�ai � jEai � j�ðEa; �kÞi (4)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zð�kÞ
D

s
j�kij0i þ . . . (5)

where j�i ¼ sin�j0i þ cos�j1i and the ellipsis represents
terms in which the ancilla qubit is in the state j1i.

We can use Grover’s algorithm [12] to amplify the over-
lap of j�ki with the projector �0 ¼ I � j0ih0j associated
to the subspace where the ancillary qubit is in the state j0i.
Indeed, applying q ¼ b

ffiffiffiffiffiffiffiffiffiffi
D

Zð�kÞ
q

c times the sequence of two

reflections ðI � 2j�kih�kjÞð1� 2�0Þ to the state j�ki
will boost the amplitude of the term j�ki � j0i from its

initial value
ffiffiffiffiffiffiffiffiffiffi
Zð�kÞ
D

q
to nearly 1. However, q cannot be

computed exactly because at this stage of the algorithm,
Zð�kÞ is known only within relative accuracy k�

‘ . This is

nonetheless sufficient to amplify the amplitude of the term
j�ki � j0i toOð1Þ. An amplitude 1�Oð�‘Þ can be achieved
using fixed-point search [13,14] at an additional multi-

plicative cost of log‘� .

The fluctuations of fðE; EaÞ will in general invalidate
the procedure we have described. If we perform QPE with
a slightly larger number of qubits—i.e., if we use an ðmþ
4Þ-qubit energy register—the probability that the estimated
energy E deviates from its true value Ea by more that
2�m=t will be less than 1=16 [11]. To further suppress
these fluctuations, we can perform 	 independent QPE
procedures and compute the median M of the 	 results.
The probability that this median value deviates from the
true energy by more than 2�m=t is less than 2�	 [15].

The evaluation of the median can be done by a coherent
quantum process. There is an efficient quantum circuit on
	 energy registers and one m-qubit ‘‘median’’ register that

maps jEð1Þi � jEð2Þi � . . . � jEð	Þi � j0mi to jEð1Þi �
jEð2Þi � . . . � jEð	Þi � jMðEð1Þ; Eð2Þ; . . .Þi. From the result
stated above, we know that on input eigenstate jai, only
two median register states jE�

a i and jEþ
a i encoding the

closest m-bit estimates of Ea can have an amplitude of

magnitude larger than
ffiffiffiffiffiffiffiffiffi
2�	

p
. This can be used to prepare a

‘‘good enough’’ version of the infinite temperature purified
marked Gibbs state

j ~�0i¼D�ð1=2ÞX
a

jai�ð�aj��
a ijE�

a iþ�aj�þ
a ijEþ

a iÞþjbadi;

(6)

where j�aj2 þ j�aj2 � 1� 2�	, jE�
a � Eaj � 2�m=t, and

jbadi represent the components where the median deviates
from the true energy by more than 2�m=t, so hbadjbadi �
2�	. The scratchpad states j��

a i contain the original states
j�ai used to purify the infinite temperature Gibbs state and
the 	 energy registers used for the computation of the
median, whose value is encoded in the third register.
With m ¼ log2ð�‘=t�Þ the error caused on the Gibbs

state by the roundoff of the energy estimate will be Oð�‘Þ
(see Appendix C in the supplementary material [9]).
Similarly, this roundoff error will lead to a Oð�‘Þ relative
error on our estimate of Fk (see Appendix B in the supple-
mentary material [9]). The error due to the jbadi compo-
nent of Eq. (6) requires a bit more attention. The reason is
that the relative weight of the good and the bad component
[i.e., first and second term of Eq. (6)] is in general not
preserved by Grover’s amplification. Although the norm of

jbadi starts out small, it can increase by a factor e�kEmax=2

during the amplification process. Setting 	 ¼ ½lnð‘�Þ þ
�kEmax�= lnð2Þ insures that the norm of jbadi will remain
bounded by �

‘ after the amplification process, so can safely

be ignored. This completes our presentation of the univer-
sal thermalization process, and demonstrates that the Gibbs
state can be prepared with accuracy � ¼ �

‘ by a local pro-

cess in time Tthð�Þ2Oð
ffiffiffiffiffiffiffiffi
D

Zð�Þ
q

�Emax

� log1�½log1�þ�Emax�Þ.
We now describe how the state j�ki can be used to

estimate the ratio Fk. Similarly to the procedure that led
to Eq. (5), we append to the quantum Gibbs state j�ki yet
another ancillary qubit in the state j0i and rotate it by an
angle �ðE;��kþ1Þ conditioned on the energy register,
resulting in

j�ki ¼
X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e��kEa

Zð�kÞ

s
jai � j�ai � jEai � j�ðEa;��kþ1Þi

¼ ffiffiffiffiffiffi
Fk

p j�kþ1ij0i þ . . . (7)

where the ellipsis represent terms in which the ancilla qubit
is in the state j1i. Clearly, the squared norm of �0j�ki is
equal to the quantity Fk we are trying to estimate. Thus, Fk

can be estimated by quantum counting [16], i.e., using
phase estimation to estimate the eigenvalue of the unitary
matrix ðI� 2j�kih�kjÞð1� 2�0Þ associated to the Jordan
block that supports j�ki. An accuracy �

‘ requires
‘
� uses of

the circuit that prepares j�ki, so the total time required to
evaluate the partition function with accuracy � with con-

stant success probability is Oð
ffiffiffiffiffiffiffiffi
D

Zð�Þ
q

�5E5
max

�2
Þ.

More generally, any thermalization process can be used
to evaluate Fk. Indeed, a purified Gibbs state can be
prepared by simulating the thermalization process with a
quantum computer, substituting the system’s maximally
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mixed state I
D in Eq. (1) by a maximally entangled state

1ffiffiffi
D

p P
ajai � j�ai. Hence, this requires a time proportional

to the thermalization time of the system. This state can be
marked using multiple QPEs and evaluating their median
as described above. An error at most � is achieved with

constant probability in time OðTthð�Þ �
5E5

max

�2
Þ.

The complexity of our algorithm scales with the system

size as
ffiffiffiffiffiffiffiffi
D

Zð�Þ
q

¼ D� where D ¼ dn is the Hilbert space

dimension and we can express the scaling exponent � ¼
1
2 hð�Þ= logðdÞ as a function of the Helmholtz free energy

density hð�Þ (energy is defined relative E�). Figure 1
shows this exponent for the Ising model as a function of
inverse temperature. For temperatures of order unity in
natural units, this scaling parameter approaches 1

2 , which

naturally coincides with the running time found in [17] to
compute the ground state energy of the system. At higher
temperatures however, the algorithm can be significantly
faster. Surprisingly, the running time is shortest at the
critical field g=J ¼ 1, where the correlations in the system
are the strongest.

For a classical Hamiltonian, the energy of a given con-
figuration can be computed exactly. In that case, our ther-
malization process produces a Gibbs state with accuracy �

in time
ffiffiffiffiffiffiffiffiffiffi
D

Zð�kÞ
q

log1� . The only approximation to the parti-

tion function involved in that case comes from quantum
counting, soZð�Þ can be evaluated with accuracy � in time

OðPk
‘
�

ffiffiffiffiffiffiffiffiffiffi
D

Zð�kÞ
q

Þ. This should be compared to the time

OðPk
‘
�

1ffiffiffiffi
�k

p Þ required by the quantum simulated annealing

algorithm [1,2], where �k is the spectral gap of a Markov
chain whose fixed point is the Gibbs state of the system at
inverse temperature �k. Thus, our method offers a speed-
up for the computation of a classical partition function
whenever no such Markov chain can be found with � �
Zð�Þ=D.

Conclusion.—We have presented a quantum algorithm
to prepare the Gibbs state of a quantum system in a time
that grows like the �th power of the system’s Hilbert space

dimension, where � � 1
2 is proportional to the Helmholtz

free energy density hð�Þ at inverse temperature �. This
sets a universal upper bound on the thermalization time of
quantum systems. However, our universal thermalization
process fails to recognize special properties of the sys-
tem—e.g., large energy gap, absence of long range corre-
lations—that could potentially speed-up the computation.
We are actively investigating this problem.
We have demonstrated how the ability to thermalize a

quantum system on a quantum computer leads to an algo-
rithm to estimate its partition function with accuracy � in a
time proportional to the system’s thermalization time and
��2. Our method provides a complete quantum general-
ization of the work reported in [1,2] for partitions functions
of classical systems and may provide an additional speed-
up when there exist no rapidly mixing Markov chain to
prepare the system’s Gibbs state.
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FIG. 1 (color online). Scaling exponent as a function of the
inverse temperature for the one dimensional Ising model defined

by the Hamiltonian HðJ; gÞ ¼ P
ig


ðiÞ
x þ J
ðiÞ

z 
ðiþ1Þ
z for differ-

ent values of g=J (g=J ¼ 1 is critical). The absolute values of g
and J are fixed by kHðg; JÞk ¼ kHð0; 1Þk. Like the partition
function, � is symmetric under J $ g.
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