
Comment on ‘‘Nonmonotonic Models are Not
Necessary to Obtain Shear Banding Phenomena
in Entangled Polymer Solutions’’

A recent Letter [1] attempted to explain some emerging
yielding phenomena involving both continuing [2] and
interrupted [3,4] (shear or extensional) deformations by
taking the standpoint that if numerical calculations based
on a Doi-Edwards (DE) tube model [5] could produce
something resembling the experimental observations,
then the DE tube model must already contain the required
physical ingredients, and there should be no need to in-
troduce ‘‘new physics.’’ Others followed a similar philo-
sophical line to study instability in extension [6].

Contrary to the title of [1], shear banding would emerge
from monotonic curves only if there was a stress gradient
as in circular Couette geometry. Moreover, in their model
calculations, no motions would show up during relaxation
from a preceding homogeneous step strain. See their re-
sponse to the present Comment. Experiment reveals non-
quiescent relaxation from homogeneous step strain
produced in parallel disks [3(a)] and parallel-sliding plates
[4]. It appears that high elastic deformation, not any pre-
existing stress gradient, is responsible for the observed
postdeformation failure, which we have termed elastic
yielding [7].

Second, there is a conceptual and numerical error in
Ref. [1], making it unrealistic for comparison with experi-
ment: The authors had mistaken the experimental plateau
width of 103 as the number of entanglements per chain Z ¼
N=Ne � �d=�R. The experimental systems actually had
Z < 50. Moreover, Adams and Olmsted (AO) chose an ex-
ceedingly small viscosity ratio of solvent to solution, i.e.,
" ¼ 10�5. The experiment actually always avoided this
limit, for which significant wall slip would dominate the
rheological response. Yet AO calculation could not dem-
onstrate dominance of wall slip under such a condition.

Third, the Letter considered only the condition that shear
inhomogeneity has already occurred before shear cessation
to produce a residual stress gradient and thus missed the
essential phenomenon [3(a),4] that macroscopic motions
occur after homogeneous step strains. The calculation had
little to do with the observed elastic yielding in Figs. 3 and
4 of [3(a)] that was known to them since 2006.

It is not uncommon for models containing inadequate
physics to generate results in resemblance with experi-
ment. Therefore, the calculations made in these Physical
Review Letters articles do not expel the likelihood that new
physics is required to describe large deformation behavior
of entangled polymeric liquids. Experiments have revealed
that the relaxation of a deformed polymer is stable against
any macroscopic motions only when the deformation is
below a critical level. The DE type model [8] does not and
cannot identify this threshold that reflects an intrinsic level
of cohesion. Sufficient elastic deformation produced by a

step strain can result in yielding of the entanglement net-
work [7]. Chain entanglement exists due to the entropic
barrier, and temporary structural integrity of an entangled
polymer liquid exists because of this entanglement.
Dynamically speaking, entanglement means that the
chains cannot pass around one another without spending
some time to do so. Disentanglement or cohesive failure
occurs whenever the chains spend less time passing around
one another than they do in equilibrium. It is clear that the
emerging phenomenology including nonquiescent relaxa-
tion requires new concepts such as finite cohesion and
elastic yielding. More elementarily, any theoretical treat-
ment has to be able to account for such heterogeneous
responses as interfacial wall slip or internal slip.
Actually, long ago, Brochard and de Gennes recognized
[9] that tube models cannot adequately elucidate wall slip.
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