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We perform a quantitative analysis of extensive chess databases and show that the frequencies of

opening moves are distributed according to a power law with an exponent that increases linearly with the

game depth, whereas the pooled distribution of all opening weights follows Zipf’s law with universal

exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and

show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus, in the case of

hierarchical fragmentation the scaling is truly universal and independent of a particular generating

mechanism. Our findings are of relevance in general processes with composite decisions.
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Decision making refers to situations where individuals
have to select a course of action among multiple alterna-
tives [1]. Such processes are ubiquitous, ranging from
one’s personal life to business, management, and politics,
and have a large part in shaping our life and society.
Decision making is an immensely complex process and,
given the number of factors that influence each choice, a
quantitative understanding in terms of statistical laws re-
mains a difficult and often elusive goal. Investigations are
complicated by the shortage of reliable data sets, since
information about human behavior is often difficult to be
quantified and not easily available in large numbers,
whereas decision processes typically involve a huge space
of possible courses of action. Board games, such as chess,
provide a well-documented case where the players in turn
select their next move among a set of possible game
continuations that are determined by the rules of the game.

Human fascination with the game of chess is long-
standing and pervasive [2], not least due to the sheer
infinite richness of the game. The total number of different
games that can be played, i.e., the game-tree complexity of
chess, has roughly been estimated as the average number of
legal moves in a chess position to the power of the length of
a typical game, yielding the Shannon number 3080 � 10120

[3]. Obviously only a small fraction of all possible games
can be realized in actual play. But even during the first
moves of a game, when the game complexity is still
manageable, not all possibilities are explored equally
often. While the history of successful initial moves has
been classified in opening theory [4], not much is known
about the mechanisms underlying the formation of fashion-
able openings [5]. With the recent appearance of extensive
databases, playing habits have become accessible to quan-
titative analysis, making chess an ideal platform for ana-
lyzing human decision processes.

The set of all possible games can be represented by a
directed graph whose nodes are game situations and whose
edges correspond to legal moves from each position

(Fig. 1). Every opening is represented by its move se-
quence as a directed path starting from the initial node.
We will differentiate between two game situations if they
are reached by different move sequences. This way the
graph becomes a game tree, and each node � is uniquely
associated with an opening sequence.
Using a chess database [6] we can measure the popular-

ity n� or weight of every opening sequence as the number
of occurrences in the database. We find that the weighted
game tree of chess is self-similar and the frequencies SðnÞ
of weights follow a Zipf law [7]

SðnÞ � n�� (1)

with universal exponent� ¼ 2. Note, the precise scaling in
the histogram of weight frequencies SðnÞ and in the cumu-
lative distribution CðnÞ over the entire observable range
[Fig. 2(a)]. Similar power law distributions with universal
exponent have been identified in a large number of natural,
economic, and social systems [7–15]—a fact which has
come to known as the Zipf or Pareto law [7,8]. If we count
only the frequencies SdðnÞ of opening weights n� after the
first d moves we still find broad distributions consistent
with power law behavior SdðnÞ � n��d [Fig. 2(b)]. The
exponents �d are not universal, however, but increase
linearly with d [Fig. 2(b), inset). The results are robust:
similar power laws could be observed in different data-
bases and other board games, regardless of the considered
game depth, constraints on player levels or the decade
when the games were played. Stretching over 6 orders of
magnitude, the here-reported distributions are among the
most precise examples for power laws known today in
social data sets.
As seen in (Fig. 1) for each node � the weights of its

subtrees define a partition of the integers (1 . . . n�). The
assumption of self-similarity implies a statistical equiva-
lence of the branching in the nodes of the tree. We can thus
define the branching ratio distribution over the real interval
r 2 ½0; 1� by the probability QðrjnÞ that a random pick
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from the numbers 1 . . . n is in a subset of size smaller or
equal to rn. Taking n to infinity QðrjnÞ may have a
continuous limit QðrÞ for which we find the probability
density function (PDF) qðrÞ ¼ Q0ðrÞ. If the limit distribu-
tion qðrÞ of branching ratios exists it carries the fingerprint
of the generating process. For instance, the continuum limit
of the branching ratio distribution for a Yule-Simon pref-
erential growth process [13] in each node of the tree would
be qðrÞ � r�, where �< 0 is a model specific parameter.
On the other hand, in a k-ary tree where each game
continuation has a uniformly distributed random a priori
probability the continuum limit corresponds to a random
stick breaking process in each node, yielding qðrÞ � ð1�
rÞk�2. For the weighted game tree of chess qðrÞ can directly
be measured from the database [Fig. 3(a)]. We find that
qðrÞ is remarkably constant over most of the interval but
diverges with exponent 0.5 as r ! 1, and is very well fitted
by the parameterless arcsine distribution

qðrÞ ¼ 2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p : (2)

The form of the branching ratio distribution suggests that
in the case of chess there is no preferential growth process
involved, but something entirely different which must be
rooted in the decision process during the opening moves of
a chess game [5].
In the following we show that the asymptotic Zipf law in

the weight frequencies arises independently from the spe-
cific form of the distribution qðrÞ, and hence, the micro-
scopic rules of the underlying branching process. Consider
N realizations of a general self-similar random segmenta-
tion process of N integers, with paths (�0; �1; . . . ) in the
corresponding weighted tree. In the context of chess each
realization of this process corresponds to a random game
from the database ofN games (e.g., dark shading in Fig. 1).
The weights nd ¼ n�d

describe a multiplicative random
process

nd ¼ N
Yd
i¼1

ri; n0 ¼ N; (3)

where the branching ratios rd ¼ nd=nd�1 for sufficiently
large nd are distributed according to qðrÞ independent of d.
For lower values of nd the continuous branching ratio
distribution is no longer a valid approximation and a
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FIG. 2 (color online). (a) Histogram of weight frequencies
SðnÞ of openings up to d ¼ 40 in the Scid database and with
logarithmic binning. A straight line fit (not shown) yields an
exponent of � ¼ 2:05 with a goodness of fit R2 > 0:9992. For
comparison, the Zipf distribution Eq. (8) with � ¼ 1 is indicated
as a solid line. Inset: number CðnÞ ¼ PN

m¼nþ1 SðmÞ of openings
with a popularity m> n. CðnÞ follows a power law with ex-
ponent � ¼ 1:04 (R2 ¼ 0:994). (b) Number SdðnÞ of openings of
depth d with a given popularity n for d ¼ 16 and histograms
with logarithmic binning for d ¼ 4, d ¼ 16, and d ¼ 22. Solid
lines are regression lines to the logarithmically binned data
(R2 > 0:99 for d < 35). Inset: slope �d of the regression line
as a function of d and the analytical estimation Eq. (6) using
N ¼ 1:4� 106 and � ¼ 0 (solid line).

FIG. 1 (color online). (a) Schematic representation of the
weighted game tree of chess based on the SCIDBASE [6] for the
first three half moves. Each node indicates a state of the game.
Possible game continuations are shown as solid lines together
with the branching ratios rd. Dotted lines symbolize other game
continuations, which are not shown. (b) Alternative representa-
tion emphasizing the successive segmentation of the set of
games, here indicated for games following a 1.d4 opening until
the fourth half move d ¼ 4. Each node � is represented by a box
of a size proportional to its frequency n�. In the subsequent half
move these games split into subsets (indicated vertically below)
according to the possible game continuations. Highlighted in (a)
and (b) is a popular opening sequence 1.d4 Nf6 2.c4 e6 (Indian
defense).
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node of weight one has at most one subtree; i.e., the state
nd ¼ 1 is absorbing.

To calculate the PDF pdðnÞ of the random variable nd
after d steps it is convenient to consider the log-
transformed variables � ¼ logðN=nÞ and � ¼ � logr.
The corresponding process f�dg is a random walk �d ¼P

d
i¼1 �i with non-negative increments �i and its PDF

�dð�Þ transforms as npdðnÞ ¼ �dð�Þ. An analytic solution
can be obtained for the class

qðrÞ ¼ ð1þ �Þr�; 0 � r � 1; (4)

of power law distributions, which typically arise in prefer-
ential attachment schemes. In this case the jump process �d

is Poissonian and distributed according to a gamma distri-

bution �dð�Þ ¼ ð1þ�Þd
ðd�1Þ!�

d�1e�ð1þ�Þ�. After retransforma-

tion to the original variables and noting that from the
probability pdðnÞ for a single node at distance d to the
root to have the weight n one obtains the expected number
SdðnÞ of these nodes in N realizations of the random
process as SdðnÞ ¼ NpdðnÞ=n, and in particular

SdðnÞ ¼ ð1þ �Þd
Nðd� 1Þ!

�
log

N

n

�
d�1

�
N

n

�
1��

: (5)

The functions SdðnÞ are strongly skewed and can exhibit
power law like scaling over several decades. A logarithmic
expansion for 1< n � N shows that they approximately
follow a scaling law SdðnÞ � n��d with exponent

�d ¼ ð1� �Þ þ 1

logN
ðd� 1Þ: (6)

The exponent�d is linearly increasing with the game depth
d and with a logarithmic finite size correction which is in
excellent agreement with the chess database [Fig. 2(b),
inset]. Power laws in the stationary distribution of random
segmentation and multiplicative processes have been re-
ported before [9] and can be obtained by introducing slight
modifications, such as reflecting boundaries, frozen seg-
ments, merging, or reset events [16–18]. In contrast, the
approximate scaling of SdðnÞ in Eq. (5) is fundamentally
different, as our process does not admit a stationary distri-
bution. The exponents �d increase due to the finite size of
the database.
As shown in Fig. 3(b) we find excellent agreement

between the weight frequencies SdðnÞ in the chess database
and direct simulations of the multiplicative process, Eq. (3)
using the arcsine distribution Eq. (2). If the branching
ratios are approximated by a uniform distribution qðrÞ ¼
1 the predicted values of SdðnÞ are systematically too
small, since a uniform distribution yields a larger flow
into the absorbing state n� ¼ 1 than observed in the data-
base. Still, due to the asymptotic behavior of qðrÞ for r !
0, this approximation yields the correct slope in the log-log
plot so that the exponent �d can be estimated quite well
based on Eq. (6) with � ¼ 0.
By observing that SdðnÞ in Eq. (5) is the dth term in a

series expansion of an exponential function, we find the
weight distribution in the whole game tree as SðnÞ ¼P

dSdðnÞ to be an exact Zipf law. For branching ratio
distributions qðrÞ different from Eq. (4) the weight fre-
quencies are difficult to obtain analytically. But using
renewal theory [19] the scaling can be shown to hold
asymptotically for n � N and a large class of distributions
qðrÞ. For this, note that the random variable �ð�Þ ¼
maxðd:�d < �Þ is a renewal process in �. The expectation
E½�ð�Þ� is the corresponding renewal function related to
the distributions of the �d as

P1
d¼1 Probð�d < �Þ ¼

E½�ð�Þ�. If the expected value � ¼ E½�� ¼ E½� logr� is
finite and positive [e.g., for the distribution (4) � ¼
1=ð1þ �Þ], the renewal theorem provides

lim
�!1

d

d�
E½�ð�Þ� ¼ 1

�
: (7)

Thus, we obtain lim�!1
P1

d¼1 �dð�Þ ¼ 1
� and finally

lim
ðn=NÞ!0

SðnÞ ¼ N

�n2
: (8)

Thus, the multiplicative random process [Eq. (3)] with any
well behaving branching ratio distribution qðrÞ on the
interval [0, 1] always leads to an asymptotically universal
scaling for n � N [compare also the excellent fit of Eq. (8)
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FIG. 3 (color online). (a) Probability density qðrÞ of branching
ratios r sampled from all games in the Scid database with a bin
size of �r ¼ 0:01 and arcsine distribution Eq. (2) (black solid
line). Every edge of the weighted game tree, from nodes of size
nd�1 to nd, contributes to the bin corresponding to r ¼ nd=nd�1

with weight r. We disregarded clusters with nd < 100 so that, in
principle, a cluster could contribute to any of the bins. We found
qðrÞ to be depth independent. (b) Distribution of opening popu-
larities SdðnÞ for d ¼ 22 obtained from the Scid database (black)
and from a direct simulation of the multiplicative process
Eq. (2), with branching ratios qðrÞ taken from a uniform or
arcsine distribution. Further indicated is the theoretical result
Eq. (5) (dashed line). Similar results are obtained for other
values of d.
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to the chess data in Fig. 2(a)]. In [15] the same Zipf-law
scaling was found for the sizes of the directory trees in a
computer cluster. The authors propose a growing mecha-
nism based on linear preferential attachment. Here we have
shown that the exponent � ¼ 2 for the weight distribution
of subtrees in a self-similar tree is truly universal in the
sense that it is the same for a much larger class of generat-
ing processes and not restricted to preferential attachment
or growing.

There are direct implications of our theory to general
composite decision processes, where each action is as-
sembled from a sequence of d mutually exclusive choices.
What in chess corresponds to an opening sequence, may be
a multivariate strategy or a customized ordering in other
situations. The question how such strategies are distributed
is important for management and marketing [20]. One
consequence of our theory is that in a process of d com-
posite decisions the distribution SdðnÞ � n��d of decision
sequences, or strategies, which occur n times shows a tran-
sition from low exponents �d � 2, where a few strategies
are very common, to higher exponents �d > 2, where
individual strategies are dominating. This is due to the
divergence of the first moment in power laws with expo-
nents smaller than 2 [11]. From [Eq. (6)] the critical
number dcr of decisions at which this transition occurs
depends logarithmically on the sample size N and on the
leading order � of qðrÞ near zero as

dcr ¼ 1þ ð1þ �Þ logN: (9)

Applied to the chess database with N ¼ 1:4� 106 we
obtain dcr � 15 [see also Figs. 2(b), inset, and 4]. This
separates the database into two very different regimes: in
their initial phase (d < dcr) the majority of chess games are
distributed among a small number of fashionable openings
(for d ¼ 12, for example, 80% of all games in the database
are concentrated in about 23% of the most popular open-
ings), whereas beyond the critical game depth rarely used
move sequences are dominating such that in aggregate they
comprise the majority of all games (Fig. 4). Note, that this
result arises from the statistics of iterated decisions and
does not indicate a crossover of playing behavior with
increasing game depth.

Our study suggests the analysis of board games as a
promising new perspective for statistical physics. The
enormous amount of information contained in game data-
bases, with its evolution resolved in time and in relation to
an evolving network of players, provides a rich environ-
ment to study the formation of fashions and collective
behavior in social systems.
We are indebted to Andriy Bandrivskyy for invaluable

help with the data analysis.
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FIG. 4. Inequality [11,21] of the distribution SdðnÞ.
(a) Proportion W of games that is concentrating in the fraction
Q of the most popular openings, for several levels of the game
depth d. (b) Q as a function of d for three different values of W
(solid lines) and Gini coefficient G ¼ 1� 2

R
1
0 QðWÞdW as a

function of game depth (dotted line).
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