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The choice of impedance used to shunt a Josephson junction determines if the charge transferred

through the circuit is quantized: a capacitive shunt renders the charge discrete, whereas an inductive shunt

gives continuous charge. This discrepancy leads to a paradox in the limit of large inductances L. We show

that while the energy spectra of the capacitively and inductively shunted junction are vastly different, their

high-frequency responses become identical for large L. Inductive shunting thus opens the possibility to

observe charging effects unimpeded by charge noise.
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The Josephson junction plays a key role in supercon-
ducting devices as the only nonlinear yet dissipationless
circuit element [1]. The simplest examples of nonlinear
quantum circuits are obtained by shunting a single
Josephson junction by a purely dispersive impedance
Zð!Þ. Using a capacitive shunt, one obtains the Cooper
pair box (CPB) [2–4]; see Fig. 1(a). Alternatively, using an
inductive shunt, one obtains the single-junction flux qubit
[5] and the phase qubit [6]; see Fig. 1(b).

There is an important difference between these two
examples: in the circuit of Fig. 1(a), one of the terminals
of the Josephson junction forms a superconducting island
coupled only capacitively to the rest of the circuit, while
the circuit of Fig. 1(b) does not contain isolated pieces of
superconductor. It is well known that charges of two super-
conductors coupled by only a Josephson junction are quan-
tized at the level of eigenvalues of the corresponding
operators. Adding an inductive link between the super-
conductors destroys that quantization.

Paradoxically, intuition suggests that charge quantiza-
tion should manifest itself as long as the inductance re-
mains sufficiently large. Specifically, the properties of the
inductively shunted junction [Fig. 1(c)] should approach
those of the CPB [Fig. 1(a)] as the inductance L is in-
creased. Indeed, the environment of the Josephson junction
can formally be described by the series impedance Z ¼
i!Lð1�!2LCgÞ�1 [Fig. 1(d)], which converges to the

CPB expression ZCPB ¼ ði!CgÞ�1 as L ! 1.

The central question formulated and answered in this
Letter is whether and in what sense the charge of finite-size
superconductors remains quantized in the presence of a
material link between them. We find the proper observable
quantity that allows one to see the manifestation of charg-
ing effects and its scaling with the inductance of the
material link. In addition to the fundamental interest, our
observation has a practical value [7]: excited states of the
inductively shunted Josephson junction turn out to be
robust with respect to charge fluctuations while being
strongly anharmonic, which is an advantage over earlier
existing superconducting devices.

We start with the Hamiltonian describing the inductively
shunted junction as shown in Fig. 1(c),

H ¼ 4ECðn� ngÞ2 � EJ cos’þ EL

2
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�0

�
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Here, the canonically conjugate operators n ¼ q=2e and ’
correspond to the junction capacitor charge (in units of
Cooper pairs) and the superconducting phase difference
across the junction, and they obey the relation ½’; n� ¼ i.
The three energy scales enteringH are the (single-electron)
charging energy EC, the Josephson energy EJ, and the
inductive energy EL ¼ ð�0=2�Þ2=L, defined in terms of
the flux quantum �0 ¼ h=2e. The external magnetic flux
through the loop is denoted by�, and the effect of the gate
voltage is expressed in the offset charge ng. We note that

the spectrum is invariant with respect to static offset

FIG. 1 (color online). Examples of dispersively shunted
Josephson junctions. (a) Island-based devices, like the Cooper
pair box, are obtained by shunting a Josephson junction capaci-
tively and are typically operated by coupling to charge. (b) Loop-
based devices like the one-junction flux or phase qubit use an
inductive shunt of the Josephson junction and are commonly
operated by coupling to flux. (c) For large inductances as in the
fluxonium device, both charge and flux coupling play a role.
(d) According to Thévenin’s theorem, both circuits (a) and (b)
represent specific realizations of a Josephson junction shunted by
an impedance Zð!Þ. Taking the limit of large inductance should
smoothly connect the realization (c) to (a).
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charge, which can be confirmed by applying a gauge trans-
formation �c ð’Þ ¼ eing’c ð’Þ.

In spite of the familiarity of the Hamiltonian (1), its
physics beyond the flux and phase qubit regimes (EC �
EL & EJ) has remained largely unexplored, with the no-
table exception of the work by Kitaev [8]. We focus on the
regime of large inductances where EL represents the small-
est energy scale, EL � EC; EJ. In the first step, we show
that the large-inductance limit does not smoothly transform
the energy spectrum of the inductively shunted device into
that of the CPB. Ultimately, the reason for the subtlety of
this limit stems from the opposed symmetries of the two
systems: while the CPB has a strictly periodic potential
when written in the phase basis, the inductive shunt always
breaks this periodicity. Equivalently, the discrepancy may
be formulated in the charge basis: due to the presence of an
island in the CPB, charge on the corresponding node is
quantized, whereas the inductive shunt eliminates the is-
land and renders the charge continuous.

The key to our analysis consists of transforming the
Hamiltonian (1) into the basis of Bloch waves fjs; pig,
where s 2 N is the band index and p 2 ½0; 1Þ the quasi-
momentum. These states diagonalize the CPB part (com-
prising the terms �EC and EJ) of the Hamiltonian (1),
H0js; pi ¼ "sðpÞjs; pi, where the eigenenergies represent
the usual CPB bands. For the transformation of the induc-
tive term, we employ the standard relation ’ ¼ id=dpþ
� [9], where the Hermitian operator � causes interband
coupling and is defined via

hpsj�jp0s0i¼�ðp�p0Þ i

2�

Z 2�

0
d’u�psð’Þ

dups0

dp
ð’Þ: (2)

Here, ups is the Bloch amplitude, h’js; pi ¼ eip’us;pð’Þ.
For large EJ=EC and low-lying bands s; s0 we find

�ss0 ðpÞ � ð2EC=EJÞ1=4ð
ffiffiffi
s

p
�s;s0þ1 þ

ffiffiffiffi
s0

p
�s;s0�1Þ=2� so

that interband coupling can be neglected. This simplifies
the problem dramatically: the Hamiltonian becomes block
diagonal and separates into effective Hamiltonians

HðsÞ ¼ EL

2

�
i
d

dp
þ 2��

�0

�
2 þ "sðpÞ (3)

for the low-lying bands. The spectra of HðsÞ with periodic
boundary conditions in p have to be overlaid. Note that
Eq. (3) is structurally identical to the CPB Hamiltonian. In
the following we will draw from the knowledge of the CPB
in both charge and transmon regimes [3,10].

According to Eq. (3), EL determines the kinetic en-
ergy while the CPB bands "sðpÞ act as potentials for
the inductively shunted device. The potentials are peri-
odic, can be expressed as Fourier series "sðpÞ ¼P1

‘¼0 "s;‘ cosð2�‘pÞ, and approach simple sinusoids for

large EJ=EC. For small inductive energies, each low-lying
CPB band supports two types of states: (i) metaplasmon

states with approximate level spacing 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ELj"s;1j

q
, which

are bound states in the CPB potential, and are associated
with large charge oscillation across the Josephson junc-

tion, and (ii) persistent-current states, existing in the gaps
of the ‘‘bare’’ (EL ¼ 0) CPB device; these states are asso-
ciated with substantial persistent currents circulating (at
finite EL) through the inductor. As a result, the energy
spectrum of the shunted junction separates into regions
with small level spacings fitting into the bands of the
CPB, and large level spacings in the regions of CPB
gaps. This distinction grows stronger with the decrease of
the ratio EL=EC; see Fig. 2(a)–2(c).
The nature of the persistent-current states can further be

clarified by rewriting the Hamiltonian (3) in the discrete
local-minimum basis fjm; sig, which formally parallels the
charge basis of the CPB,

HðsÞ ¼ ð2�Þ2
2

ELðmþ�=�0Þ2

þ 1

2

X1
‘¼0

X1
m¼�1

"s;‘½jm; sihmþ ‘; sj þ H:c:�: (4)

Physically, jm; si corresponds to a state localized in the
mth local minimum of the phase-basis potential, carrying a

persistent current IðsÞm ¼ ðm�0 þ�Þ=L. From Eq. (4), the
energies of persistent-current states are found to be

EðsÞ
m � "s;0 þ 2�2ELðmþ�=�0Þ2; (5)

where m 2 Z has sufficiently large modulus so that EðsÞ
m >

maxp"sðpÞ. Thus, to lowest order in the interwell tun-

neling, the persistent-current states are doubly degenerate
at zero flux, and each degenerate subspace is spanned by

the two counterpropagating states with currents IðsÞ�m�
�m�0=L around the superconducting loop. At higher or-
der in the interwell tunneling, this degeneracy is lifted and
time-reversal symmetry, which requires I ¼ 0 for vanish-
ing magnetic flux, is restored. The resulting avoided cross-
ings are extremely small. Specifically, for a purely sinu-
soidal s ¼ 0 band, i.e., "0;‘ ¼ 0 for ‘ > 1, the splitting be-

FIG. 2 (color online). Energy spectra for the inductively
shunted Josephson junction at zero flux. The progression (a)–
(c) shows energy spectra for EJ=EC ¼ 2:5 and decreasing in-
ductive energy EL. Energies are given in units of the plasma
oscillation frequency @!p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EJEC

p
. For small EL, the spec-

trum exhibits regions with significantly different level spacings.
(d) Comparison with the CPB bands for the same EJ=EC ratio
reveals that regions of small (large) level spacings coincide with
band (gap) regions in the CPB.
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tween jm; s ¼ 0i and j�m; s ¼ 0i is generated by tun-
neling through the 2m potential barriers separating
the two states, and scales as �Em�"2m0;1½ð2�Þ2EL�1�2m�
½ð2m�1Þ!��2.

Metaplasmon and persistent-current states also differ in
their localization and respective flux dependence. As is
evident from Eq. (4) and illustrated in Fig. 3(a), metaplas-
mon states are typically delocalized across several wells
around ’ ¼ 0, whereas persistent-current states tend to
localize in ’ space in the region of the corresponding
parabolically deformed band. For the bound metaplasmon
states, the flux dependence is exponentially suppressed;
specifically, variations in the metaplasmon states of band

s scale as � exp½�4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j"s;0j=EL

q
=��. By contrast, Eq. (5)

predicts that persistent-current states are strongly sensitive
to magnetic flux. For the lowest bands, these predictions
are confirmed by results from numerical diagonalization;
see Fig. 3(d). Persistent-current states exist above the low-
est CPB band and overlap with s > 0 metaplasmon states.
At higher energies, avoided crossings between metaplas-
mon and persistent-current states become more significant,
as interband coupling increases for higher bands.

The previous discussion underlines the differences be-
tween the spectra of the CPB and the inductively shunted
Josephson junction: the presence of the inductor introduces
new levels located in the band gaps of the CPB, and these
levels do not disappear in the limit of small EL. However,
we will now argue that in the limit of large inductance, the
ac properties of the shunted device approach those of the
CPB. To be specific, we consider the realistic [10] coupling
of the junction charge n to an ac voltage potential, which
modifies the offset charge term in Eq. (1), ng !
ng þ CgVrmsðaþ ayÞ=2e. Here, a; ay annihilate or create

a photon in the microwave field mode, Vrms denotes its
root-mean square voltage. Transitions are then induced by
tuning the field into resonance, and the transition strength
depends directly on the charge matrix elements hfjnjii,
where i, f denote the initial and final states of the tran-
sition. At low energies where interband coupling is negli-
gible, these states can be identified as eigenstates of
Eq. (3), and we will write, e.g., jii ¼ js�i, thus denoting
the �th eigenstate belonging to band s. We find

hs0�0 jnjs�i ¼ iðEJ=2ECÞ1=4ð
ffiffiffi
s

p
�s;s0þ1 �

ffiffiffiffi
s0

p
�s;s0�1Þ

�
Z 1=2

�1=2
dp��

s0�0 ðpÞ�s�ðpÞ: (6)

The integral involves the quasimomentum representation
�s�ðpÞ 	 hspjs�i of eigenstates, and is amenable to evalu-
ation within WKB approximation. In complete analogy to
the Franck-Condon principle, the matrix elements peak
when the transition between the corresponding classical
turning points occurs vertically; see Fig. 4. For the meta-
plasmon transitions from s ¼ 0 to 1 we find that below this
optimum the matrix elements decay exponentially with

� exp½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j"0;1jEL

q
ð�=j"1;1jÞ3=2=2��, whereas for ener-

gies above, the decay is oscillatory and follows a power-

law decay �½E3
L=ðj"11"01j�Þ�1=4, where � is the energy

deviation from the optimum. As a result, in the limit of
large inductances the matrix elements select the CPB-
allowed transitions, thus producing pronounced charging
effects.
We now discuss the charge-noise sensitivity of the in-

ductively shunted junction, and show that the charging
effects revealed in the ac response remain largely un-
spoiled by 1=f charge noise. The origin of the reduced
sensitivity to charge noise is similar to that of the single-
junction flux qubit and the flux-biased phase qubit [11].

FIG. 3 (color). Metaplasmon and persistent-current states for
large inductances. Panel (a) shows the potential in ’ space
(cyan), the corresponding bent CPB bands (orange), and ex-
amples of wave functions at zero flux: black, ground-state wave
function (lowest s¼0metaplasmon state); blue, s¼0 persistent-
current states; green, lowest s ¼ 1 metaplasmon state; yellow,
s ¼ 2 metaplasmon state. Localization in ’ space differs char-
acteristically, with metaplasmon states being centered at ’ ¼ 0
and delocalized, while persistent-current states are symmetric
and antisymmetric superpositions of wave functions localized to-
wards the edges of the parabolically deformed bands. (b) Corre-
sponding CPB spectrum for comparison. Using the same color
coding, (c) and (d) show the spectrum overlaid by the CPB bands
and the flux dependence of energy levels, respectively.
Metaplasmon states (independent of flux) and persistent-current
states (sensitive to flux) are easily distinguished. For the parame-
ters chosen here, EJ=EC ¼ 2:5 and EL=EC ¼ 10�3, interband
coupling becomes significant at higher energies (levels in gray),
leading to avoided crossings between s ¼ 1 persistent-current
states and s ¼ 2 metaplasmon states.
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Closing the Josephson junction by an inductive load allows
one to evade the most severe problems caused by 1=f
charge noise. Specifically, the vanishing dc impedance of
the inductive element renders the energy spectrum inde-
pendent of any constant offset charge, and transforms the
1=f charge noise into a relatively benign ‘‘f noise.’’

To confirm this, consider the effects of a fluctuating
offset charge ngðtÞ in the Hamiltonian (1). Again, we apply

a gauge transformation �c ð’Þ ¼ eing’c ð’Þ. Taking into
account the time dependence of ng, this results in a

Hamiltonian �H, obtained from H by eliminating the offset
charge ng from the charging term and appending a term

�@ _ng’. Thus, the energy spectrum only depends on the

time derivative of the offset charge, in a fashion similar to
the dependence on flux �, see Eq. (1) [12]. The relevant
noise spectrum for _ng is S _ngð!Þ ¼ !2Sngð!Þ, such that

Gaussian charge noise with a 1=f spectrum, Sngð!Þ ¼
A=j!j, is transformed into benign f noise. Assuming an
ultraviolet cutoff of the 1=f spectrum at frequency 1=�u,
the residual effect of _ng noise away from flux sweet spots

and for long times t 
 �u is controlled by the behavior of

the integral gðtÞ ¼ ð@!ij=@ _ngÞ2
R1=�u
1=t d!Sngð!Þ, such that

off-diagonal elements of the density matrix decay as �ij �
exp½�gðtÞ�. For large t, the integral gðtÞ is logarithmically
divergent, and yields a slow power-law decay with expo-
nent proportional to ð@!ij=@�Þ2. Remarkably, the flux

sweet spots thus become first-order insensitive to charge
noise, and metaplasmon states with their suppressed flux
dependence are expected to be especially well protected.
The slow power-law decay should be contrasted with the
rapid loss of coherences in the absence of an inductive
shunt, which follows an exponential decay.

To summarize, the physics of the inductively shunted
Josephson junction in the large-L limit is distinct from the
ones accessed by flux and phase qubits. Two different types
of states, metaplasmon and persistent-current states, with

distinct level spacings and magnetic flux dependence
dominate the spectrum at low energies. While the spectrum
of the junction with large inductive shunt also differs from
that of the CPB, we have demonstrated that the ac response
due to charge coupling approaches the well-known re-
sponse of the CPB, thus resolving the dichotomy of island
versus loop-based devices in the L ! 1 limit. These find-
ings have been successfully employed in the analysis of a
recent experiment [7], and will be of future interest in
exploring the device’s applicability to quantum informa-
tion processing and observation of Bloch oscillations.
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FIG. 4 (color online). Matrix elements relevant for excitation when coupling the junction charge to an ac voltage. The magnitude of
the matrix element for a transition to final state jji is shown as a function of the final state energy Ej, in (a) for EL=EC ¼ 10�3 starting

in the ground state and in (b) for EL=EC ¼ 10�4 for several initial states. The prominent gap in the matrix elements demonstrates the
strong suppression of transitions from metaplasmon states to persistent-current states. For transitions among metaplasmon states, the
matrix elements reach a distinct maximum for the transition occurring in the corresponding CPB without the inductive shunt (vertical
dashed lines). Lowering EL makes the peak narrower, and leads to a selection rule excluding all but the CPB-allowed transitions.
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