
Diffusion and Ballistic Transport in One-Dimensional Quantum Systems

J. Sirker,1,2 R.G. Pereira,3 and I. Affleck4

1Department of Physics and Research Center OPTIMAS, TU Kaiserslautern, D-67663 Kaiserslautern, Germany
2Max-Planck-Institute for Solid State Research, D-70569 Stuttgart, Germany

3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
4Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T1Z1

(Received 9 July 2009; published 19 November 2009)

It has been conjectured that transport in integrable one-dimensional systems is necessarily ballistic. The

large diffusive response seen experimentally in nearly ideal realizations of the S ¼ 1=2 1D Heisenberg

model is therefore puzzling and has not been explained so far. Here, we show that, contrary to common

belief, diffusion is universally present in interacting 1D systems subject to a periodic lattice potential. We

present a parameter-free formula for the spin-lattice relaxation rate which is in excellent agreement with

experiment. Furthermore, we calculate the current decay directly in the thermodynamic limit using a time-

dependent density matrix renormalization group algorithm and show that an anomalously large time scale

exists even at high temperatures.
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For a generic system of interacting particles at suffi-
ciently high temperatures, transport is expected to be scat-
tering limited. In d spatial dimensions, the signature of
diffusive motion is the characteristic long-time decay of

the autocorrelation function hnrðtÞnrð0Þi � t�d=2. Here, nr
represents the density of a globally conserved quantityP

rnr. In very clean systems, however, transport can be a
subtle issue because constants of motion may slow down
the current decay or even prevent currents from decaying
completely. An important role in our understanding of
strongly correlated electrons is played by integrable quan-
tum models. Since these models possess an infinite number
of local conserved quantities, one might expect ideal (bal-
listic) transport to be the rule rather than the exception [1].
Whether or not diffusive behavior is possible at all in such
systems is indeed an intensely studied [1–13] but still open
question. Experimentally, the question if spin diffusion
holds in Heisenberg chains has been investigated for dec-
ades [14–17].

In the thermodynamic limit, ballistic transport can be
defined from the condition that the current-current corre-
lation function hJ ðtÞJ ð0Þi, where J is the spatial integral
of the current density operator and the brackets denote
thermal average, does not decay to zero at large times.
This happens, for example, in a free electron gas, where J
is proportional to the momentum operator and therefore
conserved in a translationally invariant system [13]. The dc
conductivity is then infinite. Next, we consider the case
where the current operator itself is not conserved but a
conserved quantity Q exists which has finite overlap with
J . We can then write J ¼ J k þ J?, with J k ¼
ðhJQi=hQ2iÞQ being the part which cannot decay [9],
leading to parallel diffusive and ballistic channels as in-
dicated in Fig. 1. This idea can be generalized to a set of
orthogonal conserved quantities Qn, hQnQmi ¼ hQ2

ni�n;m,

and leads to Mazur’s inequality [6,18]

D ¼ 1

2LT
lim
t!1hJ ðtÞJ ð0Þi � 1

2LT

X
n

hJQni2
hQ2

ni
: (1)

Here, L is the system size and T the temperature. The
Drude weight D measures the weight of the delta-function
peak in the real part of the optical conductivity at zero
frequency, �0ð!Þ ¼ 2�D�ð!Þ þ �regð!Þ. In principle,

both D and �regð! ¼ 0Þ can be nonzero [2]. Weak break-

ing of the conservation laws renders the conductivity fi-
nite, but in this case the projection of the current onto
the longest lived Qn sets a lower bound for the conductiv-
ity [9].
It is important to note that the right-hand side of Eq. (1)

can vanish even if integrability allows us to construct an
infinite set of conserved quantities. In the following, we
consider the integrable model of spinless fermions (XXZ
model)
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FIG. 1 (color online). In a diffusive channel, the conductivity
is limited by the dominant of the various scattering processes
pictured as a serial arrangement of resistors. If part of the current
is, however, protected by a conservation law, a parallel ballistic
channel for charge transport is opened.
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Here N is the number of sites, J the hopping amplitude, cl
annihilates a fermion at site l, and � is the interaction
strength. This model is equivalent to the anisotropic
spin-1=2 chain and is exactly solvable by Bethe ansatz
(BA) [19]. At half filling, hnli ¼ 1=2, the excitation spec-
trum is gapless for j�j � 1 and gapped for j�j> 1. The

current operator is J ¼ P
ljl, with jl ¼ �iJðcyl clþ1 �

cylþ1clÞ=2 as follows from a discretized continuity

equation.
At zero temperature, the Drude weight can be calculated

by BA [20] and is found to be finite in the gapless and zero
in the gapped regime. Mazur’s inequality can be used to
show that DðTÞ � 0 away from half filling at arbitrary
temperatures [6]. Remarkably, at half filling the Mazur
bound for the Drude weight obtained from all local con-
served quantities vanishes identically due to particle-hole
symmetry. Since this is only a lower bound, it does not
imply that D itself vanishes. However, one can argue [21]
that in the gapped regime D should remain zero at finite
temperatures. The main open question is whether the
Drude weight is finite at finite temperatures in the half
filled gapless case. Since Eq. (1) is actually an equality if
all conserved quantities are included [22], a nonzero D at
half filling requires the existence of a nonlocal conserved
quantity which has finite overlap with the current operator
[9]. DðT > 0Þ � 0 at half filling has been found in two
independent BA calculations [4,10]. However, these results
disagree and they both violate exact relations for DðTÞ at
high temperatures [10]. Further evidence for DðT > 0Þ �
0 stems from exact diagonalization (ED) [7–9] and quan-
tum Monte Carlo (QMC) calculations [5,23]. We will
discuss these numerical works in relation to our own results
at the end of this Letter.

Evidence for diffusion in the spin-spin autocorrelation
function at high temperatures has been sought via ED [11],
QMC [24], and density matrix renormalization group
(DMRG) methods [12,25]. The results at infinite tempera-
ture seemed consistent with an algebraic decay
hSzl ðtÞSzl ð0Þi � t�� with exponent � close to 1=2 as ex-

pected for d ¼ 1. At low temperatures, the diffusive con-
tribution was practically undetectable [12]. Meanwhile,
nuclear magnetic resonance (NMR) [16] and muon spin
relaxation [17] experiments even found evidence for low-
temperature diffusive behavior in two completely different
S ¼ 1=2 Heisenberg chain compounds, but have so far
remained unexplained.

In the NMR experiment on the spin chain compound
Sr2CuO3, spin diffusion is observed as a characteristic
magnetic field dependence of the spin-lattice relaxation

rate, 1=T1 � 1=
ffiffiffi
h

p
[16]. Here, only excitations with mo-

mentum q� 0, relevant for the studied transport proper-
ties, contribute. Clearly, Sr2CuO3 is not exactly an
integrable system. However, the behavior is expected to
be different depending on whether the diffusion constant is
determined by intrinsic umklapp scattering within the in-
tegrable model or by integrability-breaking perturbations.

The spin excitations propagating in a given channel only
contribute to the diffusive response at frequencies which
are small compared to the relaxation rate in that channel. If
the Drude weight of the XXZ model is large in the regime
h � T � J, then we expect a large fraction of the excita-
tions in Sr2CuO3 to propagate in a quasiballistic channel
with a very small relaxation rate. The diffusive response
should therefore be suppressed compared to the case where
the integrable model has a dominant diffusive channel.
We now calculate 1=T1 by a standard field theory ap-

proach based on the Luttinger model [19] assuming that
there is no unknown nonlocal conservation law that has a
finite overlap with J . For T � !e and � ¼ 1 we have

1

T1

� � 2T

!e

Z dq

2�
jAðqÞj2�00

retðq;!eÞ: (3)

Here �00
retðq;!Þ is the imaginary part of the longitudinal

retarded spin-spin correlation function �retðq;!Þ and!e ¼
�Bh. 1=T1 is determined by the transverse spin Green’s
function at the nuclear resonance frequency, !N � 0. By
including the Zeeman term in the time evolution of the
transverse spin operator but ignoring its negligible effects
on the Boltzmann weights and using the resulting SUð2Þ
symmetry we express 1=T1 in terms of the longitudinal
Green’s function at the electron resonance frequency!e in
(3). For the in-chain oxygen site in Sr2CuO3, we have
AðqÞ ¼ A cosðq=2Þ with jAj2¼kBðg�N@Þ2½ð2CbÞ2þ
ð2CcÞ2�=ð2@�3k2BJ

2Þ where kB is the Boltzmann constant,
Cb;c are the dimensionless components of the hyperfine
coupling tensor, g�N@ ¼ 4:74	 10�9 eV, and J is the
exchange coupling measured in kelvin. To obtain the curve
shown in Fig. 2, we used J ¼ 2000 K and 2Cb ¼ 105, and
2Cc ¼ 54 [16]. For small momentum q we find

�retðq;!Þ ¼ vKq2

2�

1

!2 � v2q2 ��retðq;!Þ : (4)
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FIG. 2 (color online). Experimental data for 1=T1 of the spin
chain compound Sr2CuO3 at h ¼ 9 T taken from Ref. [16] (dots)
compared to our theory (blue solid line). Without diffusion, � ¼
0, 1=ðT1TÞ would be almost constant (red dashed line).
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Here K is the Luttinger parameter and v the spin velocity.
For the pure Luttinger model, �retðq;!Þ 
 0, leading to
1=T1 � T in the limit T ! 0 [26]. In second order in the
umklapp scattering and first order in band curvature the
self-energy has the form

�retðq;!Þ � �2i�!� b!2 þ cv2q2: (5)

For the experimentally relevant isotropic case (� ¼ 1),
K � 1þ g=2 and v ¼ J�=2. For the decay rate �ðTÞ
and the parameters b and c we find in this case

2� ¼ �g2T; c ¼ g2

4
� 3g3

32
�

ffiffiffi
3

p
�

T2;

b ¼ g2

4
� g3

32

�
3� 8�2

3

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b2

þ
ffiffiffi
3

p
�

T2

|ffl{zffl}
b1

:
(6)

Following Lukyanov [27], the running coupling constant
gðTÞ is determined by the equation

1

g
þ lng

2
¼ ln

� ffiffiffiffi
�

2

r
e1=4þ~�

T

�
; (7)

where ~� is the Euler constant. Similarly, the parameters �,
b, and c can be determined for the anisotropic case 0<
�< 1 (see Ref. [28]). Importantly, we always find a finite
decay rate implying spin diffusion in the sense that

hnlðtÞnlð0Þi � T
ffiffiffiffiffiffiffiffi
�=t

p
at large times. At high temperatures

such that � � h but still T � J, we find 1=T1 � T
ffiffiffiffiffiffiffiffiffi
�=h

p
with �� T=ln2ðJ=TÞ for the isotropic Heisenberg model.
A comparison of the essentially parameter-free calculated
temperature dependence with experiment is shown in
Fig. 2. The good agreement indicates that a large diffusive
response is present in the integrable Heisenberg model near
half filling. Furthermore, this result shows that umklapp
scattering is a ‘‘dangerously irrelevant’’ perturbation of the
Luttinger model [26], completely changing the behavior of
1=T1 in the regime h � T from a constant to a square-root

divergence 1=
ffiffiffi
h

p
, as seen in experiment.

Our field theory calculation assumed DðT > 0Þ ¼ 0.
The optical conductivity �ðq;!Þ ¼ i!�retðq;!Þ=q2 can
be obtained from Eq. (4) and we find that

�0ð!Þ ¼ vK

2�

2�

½ð1þ bÞ!�2 þ ð2�Þ2 (8)

is a Lorentzian with width set by �. If conservation laws
protecting the Drude weight are present, they can be natu-
rally incorporated using the memory matrix formalism [2].
For a single conservation law ½Q;H� ¼ 0, this formalism
yields

�0ð!Þ ¼ Kv

2�ð1þ yÞ
�
�yð1� b1Þ�ð!Þ

þ 2�0

½ð1þ b1 þ b02Þ!�2 þ ð2�0Þ2
�
; (9)

where the parameter y 
 hJQi2=ðhJ 2ihQ2i � hJQi2Þ

measures the overlap of J with the conserved quantity,
and �0 ¼ ð1þ yÞ� and b02 ¼ ð1þ yÞb2. Here b1 and b2 in
the isotropic case are the parameters defined in Eq. (6).
Note that for y ¼ 0, Eq. (9) reduces to the optical con-
ductivity (8) obtained in the self-energy approach.
According to Eq. (9), �0ð!Þ has a ballistic and a regular
(diffusive) part, with the weight in each part being con-
trolled by y. Away from half filling (finite magnetic field in
the spin chain), a lower bound for y is provided by the
overlap with the conserved energy current operator Q ¼
J E [1]. In this case, y� ðh=TÞ2. In the half filled case a
possible unknown nonlocal conservation law would mean
that spectral weight is shifted from the Lorentzian into a
ballistic part that does not contribute to the temperature
dependence of 1=ðT1TÞ (see dashed line in Fig. 2). That the
experimental points in Fig. 2 are actually mostly above the
theoretical prediction suggests that D is rather small near
half filling.
In order to clarify the contradiction with previous studies

that supported a large Drude weight at half filling [7,8], we
used a DMRG algorithm [12,25] to calculate the current-
current correlation CðtÞ 
 hJ ðtÞJ i=L directly in the ther-
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FIG. 3 (color online). (a) CðtÞ ¼ hJ ðtÞJ ð0Þi=L at T ¼ 1 for
various � as indicated on the plot. The solid (dashed) lines
correspond to � in the critical (gapped) regime, respectively.
(b) Re½CðtÞ�=2JT at T ¼ 0:2J for � ¼ 0:6, � ¼ 0:8, and � ¼
1:0 (solid lines). The dashed lines are linear fits Re½CðtÞ�=2JT ¼
A� BJt for Jt 2 ½3:5; 7�.
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modynamic limit. According to Eq. (1), this correlation
function asymptotically yields D. Remarkably, the results
in Fig. 3(a) show that CðtÞ is nonmonotonic and does not
converge to an asymptotic value for times up to Jt ¼ 11
even for infinite temperature. This is true within the critical
as well as the gapped regime. Note that the time scales
reached in our DMRG calculations are about a factor of 2
larger than what can be achieved by ED where only times
vt < N=2 are accessible. We conclude that a large time
scale persists at T ¼ 1 posing a serious challenge for ED
studies.

While previous QMC results [5] are unable to resolve
the small decay rate, � � T, very recent ones [29] seem to
strongly support our expression for �ðTÞ in Eq. (6). Further
evidence that �ðTÞ is nonzero for T � J is provided by
Fig. 3(b) showing Re½CðtÞ�=2JT at T ¼ 0:2J. The result in
Eq. (9) predicts for the decay of the current-current corre-
lation function for t � ð2�TÞ�1 and neglecting the small
imaginary part (suppressed by a factor �=T):

CðtÞ � vKT

2�ð1þ yÞ
�
yð1� b1Þ þ e�2�0t

1þ b1 þ b02

�
: (10)

At intermediate times ð2�TÞ�1 � t � 1=�0 we obtain a
linear decay independent of y if b1; b

0
2 � 1

CðtÞ � KvTð1� 2�tÞ=½2�ð1þ bÞ�: (11)

A linear fit in this regime yields values which are consistent
with our theory (see Table I). We also note that the values
of CðtÞ=2JT for Jt � 6 are already smaller than the Drude
weight found in [10] by BA.

To summarize, we have shown that in integrable 1D
systems diffusion can coexist with ballistic transport, in
the sense illustrated in Fig. 1. This is the scenario for the
XXZ model away from half filling. For the half filled case,
however, we have argued that the large diffusive response
measured experimentally in spin chains and seen in our
numerical calculations suggests that, contrary to common
belief, the low-temperature Drude weight is either zero or
surprisingly small for � near 1.
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