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4Laboratoire de Physique Théorique, Ecole Normale Supérieure, UMR CNRS 8549, 24 Rue Lhomond, 75231 Paris Cedex 05, France

(Received 12 September 2009; revised manuscript received 10 October 2009; published 18 November 2009)

The role of geometrical frustration in strongly interacting bosonic systems is studied with a combined

numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both

Bose-Einstein condensation and spin-glass behavior. The differences between such a phase and the

otherwise insulating ‘‘Bose glasses’’ are elucidated.
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Introduction.—Quantum particles moving in a disor-
dered environment exhibit a plethora of nontrivial phe-
nomena. The competition between disorder and quantum
fluctuations has been the subject of vast literature [1,2] in
past years, with a renewed interest following from the
exciting frontiers opened by the experimental research
with cold atoms [3,4]. One of the most striking features
resulting from the presence of a disordered external poten-
tial is the appearance of localized states [1]. Localization
happens both for fermions and bosons [2], but in the latter
case one has to introduce repulsive interactions to prevent
condensation of particles in the lowest energy state. This
results in the existence of an insulating phase called ‘‘Bose
glass,’’ characterized by a finite compressibility and gap-
less density excitations in sharp contrast to the Mott insu-
lating phase [2,5].

On the other hand, latest research stimulated by the
discovery of a supersolid phase of helium has brought to
the theoretical foresight of a ‘‘superglass’’ phase [6,7], cor-
roborated by recent experimental evidence [8], where a
metastable amorphous solid features both condensation
and superfluidity, in the absence of any random external
potential. The apparent irreconcilability, between the cur-
rent picture of insulating ‘‘Bose glasses’’ and the emer-
gence of this novel phase of matter, calls for a moment of
thought. Although it has been recently demonstrated that
attractively interacting lattice bosons can overcome the lo-
calization induced by an external random potential and fea-
ture a coexistence of superfluidity and amorphous order
[9], a general understanding of the physics of Bose-
Einstein condensation in quantum glasses and in the pres-
ence of purely repulsive interactions is still in order. In par-
ticular, we wonder what could be the possible microscopic
mechanism leading to superglassines and if the external
disorder, current paradigm in the description of quantum
glasses, could be replaced by some other mechanism.

In this Letter we show that geometrical frustration is the
missing ingredient. Geometrical frustration is a well rec-

ognized feature of disordered phases in which the transla-
tional symmetry is not explicitly broken by any external
potential. Examples are spin liquids phases of frustrated
magnets [10], valence-bond glasses [11], and the order-by-
disorder mechanism inducing supersolidity on frustrated
lattices [12]. Another prominent manifestation of frustra-
tion is the presence of a large number of metastable states
that constitutes the fingerprint of spin glasses. When quan-
tum fluctuations and geometrical frustration meet, their
interplay raises nontrivial questions on the possible real-
ization of relevant phases of matter. Most pertinently to our
purposes: can quantum fluctuations stabilize a superglass
phase in a self-disordered environment induced by geo-
metrical frustration? Hereby we answer this question dem-
onstrating that repulsively interacting bosons can feature a
low-temperature phase characterized both by spin-glass
order and Bose-Einstein condensation. Such a frustration
induced superglass sheds light onto a novel mechanism for
glass formation in bosonic systems noticeably different
from the localization effects leading to ‘‘Bose glass’’ in-
sulators and paving the way to a better understanding of
this new phase of the matter.
Model.—Strongly interacting bosons on a lattice can be

conveniently described by means of the extended Hubbard
Hamiltonian, namely

cH ¼ �t
X
hi;ji

½byi bj þ bib
y
j � þ V

X
hi;ji

ninj; (1)

where byi ðbiÞ creates (destroys) a hard-core boson on site i,
ni ¼ byi bi is the site density, and the summations over the
indexes hi; ji are extended to nearest-neighboring vertices
of a given lattice with L sites. In the following, we will set
t ¼ 1; i.e., we will measure all energies in units of t. In this
work, to capture the essential physics of the problem in
exam, we adopt a minimal and transparent strategy to
induce geometrical frustration in the solid. We therefore
consider the set of all possible graphs of L sites, such that
each site is connected to exactly z ¼ 3 other sites, and we
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give the same probability to each graph in this set. We will
discuss average properties over this ensemble of random
graphs in the thermodynamic limit L ! 1. The motiva-
tions for the choice are the following. (i) On a square
lattice, model (1) is known to produce a solid insulating
phase at high enough density, where the particles are
arranged in a checkerboard pattern [13]. This is due to
the fact that all loops have even length. On the contrary,
typical random graphs are characterized by loops of even
or odd length; in the classical case t ¼ 0, this frustrates the
solid phase enough to produce a thermodynamically stable
glass phase at high density [14]. (ii) Typical random graphs
have the important property that they are locally isomor-
phic to trees, since the size of the loops scales as lnL for
large L: indeed, this is a consistent way of defining Bethe
lattices without boundary [14]. The locally treelike struc-
ture allows us to solve the model exactly, at least in the
liquid phase, by means of the cavity method [15,16].
(iii) These lattices are quite different from square lat-
tices. Yet, it has been shown in the classical case, and for
some more complicated interactions, that the phase dia-
gram is qualitatively very similar for the model defined on
a random graph and on a square lattice [17,18]. Hence, we
believe that it is possible to find a model similar to Eq. (1),
defined on a square lattice but with slightly more compli-
cated interactions (probably involving many-body terms)
that will show the same qualitative behavior of the model
investigated here.

Methods.—The stochastic sampling of the quantum par-

tition function Z ¼ Tre�� bH at finite temperature T ¼
1=� can be conveniently exploited to obtain numerically
exact properties of a generic bosonic Hamiltonian such as
(1). Quantum Monte Carlo schemes based on the original
worm algorithm idea [19] have been recently extended to
canonical ensemble simulations [20,21]. These methods
offer an efficient scheme based on the sampling of the
configuration space spanned by the extended partition

function Zwð�Þ ¼ Tre�ð���Þ bH bWe�� bH , where bW is a suit-
able worm operator determining an imaginary-time dis-
continuity in the world lines. We have chosen the worm
operator introduced in [21], which is a linear superposition
of n-body Green functions, avoiding the complications
arising in [20] where the commutability of the worm
operator with the nondiagonal part of the Hamiltonian is
required. Full details of the stochastic Green function
(SGF) method are described in Ref. [21]; we only stress
here that access to exact equal-time thermal averages of
n-body Green functions is granted as well as to thermal
averages of imaginary-time correlation functions of local,
i.e., diagonal in the occupation numbers representation,
quantum operators.

A different and complementary approach to models
defined on random lattices consists in solving them exactly
in the thermodynamic limit L ! 1, by means of the cavity
method [14]. Since local observables are self-averaging in

this limit, this results in automatically taking into account
the average over the different realizations of the random
graphs. For bosonic systems, the cavity method allows us
to reduce the solution of the model to the problem of
finding the fixed point of a functional equation for the local
effective action, in a similar spirit to bosonic dynamical
mean field theory. All the details of the computation have
been discussed in [16], where it has been shown that the
method allows us to compute the average of all the relevant
observables. However, in the simplest version discussed in
[16], the cavity method can only describe homogeneous
pure phases such as the low-density liquid. In order to
describe exactly the high density glassy phase, where
many different inhomogeneous states coexist, one has to
introduce a generalization of the simplest cavity method
which goes under the name of replica symmetry breaking
(RSB). Unfortunately, this is already a difficult task for
classical models, in particular, in spin-glass-like phases
[14]. Hence, in this paper we describe the glassy phase
using the simplest version of the method, the so-called
replica symmetric (RS) one. This yields an approximate
description of the glassy phase which we expect to be
qualitatively correct. To summarize, in the low-density
liquid phase we can compute averages numerically with
SGF and analytically with the cavity method, and we
obtain a perfect agreement between the two results. In
the glassy phase, the RS cavity method is only approxi-
mate, an exact solution for L ! 1 requiring the introduc-
tion of RSB. On the other hand, SGF is limited for large L
by the unavoidable divergence of equilibration times due to
the glassy nature of the system. Still, we find a good
agreement between the result of SGF for fairly large L,
where the system can still be equilibrated, and the RS
cavity method for L ! 1, making us confident that the
qualitative and quantitative picture of the glassy phase we
obtained here is fully consistent. Moreover, we solved the
model at the simplest (one-step) RSB level in some se-
lected state points and we found a very small quantitative
difference with the RS solution.
Results.—The presence of off diagonal long range order

can be conveniently detected by considering the large
separation limit of the one-body density matrix; i.e., the
condensate reads

�c ¼ lim
ji�jj!1

hbyi bji ¼ jhbii2j; (2)

where the square brackets indicate a quantum and thermal
average and the bar indicates averages over independent
realizations of the random graphs. The cavity method
works in the grand-canonical ensemble and gives direct
access to the average of b, while canonical ensemble
simulations done with SGF give easy access to the one-
body density matrix. On the other hand, spin-glass order is
signaled by the breaking of translational invariance,
namely hnii � L�1

P
L
i¼1hnii ¼ �. Introducing �ni ¼

ðni � �Þ, the on site deviation from the average density,
spin-glass order can be quantified by the Edwards-
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Anderson (EA) order parameter

qEA ¼ 1

L

XL
i¼1

h�nii2; (3)

which can be easily computed by the cavity method, or by
the divergence of the spin-glass (SG) susceptibility

�SG ¼ 1

L

Z �

0
d�

X
i;j

h�nið0Þ�njð�Þi2; (4)

which is more easily accessible in SGF. It is possible to
show [22] that �SG is the susceptibility naturally associated
to the order parameter qEA, because it can be defined as the
derivative of qEA with respect to an external field coupled
to the order parameter itself (as in standard critical
phenomena).

At half-filling factor � ¼ 1=2, the condensate fraction,
the Edwards-Anderson order parameter, and the scaled
spin-glass susceptibility are shown in Fig. 1. In the middle

panel we compare the values of the condensate fraction
obtained via the cavity method and via SGF in a linear
extrapolation to L ! 1. The very good coincidence of
these results supports our conjecture that the approximate
RS description of the glass phase we adopted here is
quantitatively and qualitatively accurate. At the lowest
temperature, the system becomes a glass around V � 2:7
while it still displays Bose-Einstein condensation; the con-
densate fraction only vanishes at V � 3:5 inside the glass
phase. This clearly establishes the existence of a zero-
temperature superglass phase in the region 2:7 & V &
3:5. Note additionally that both transitions are of second
order; hence, the condensate fraction is a continuous func-
tion. Since the latter stays finite on approaching the spin-
glass transition from the liquid side (where the cavity
method gives the exact solution), it must also be finite on
the glass side just after the transition. In Fig. 2 we report the
finite temperature phase diagram of the model at half-
filling. It is defined by two lines: the first separates the
noncondensed (hbi ¼ 0) from the Bose-Einstein conden-
sation (hbi � 0) phase; the second separates the glassy
(qEA � 0) from the liquid (qEA ¼ 0) phase. The intersec-
tion between these two lines determines the existence of
four different phases (normal liquid, superfluid, normal
glass, superglass).
Ground-state degeneracy.—Geometrical frustration in-

duces the existence of a highly degenerate set of ground
states, each of them characterized by a different average
on-site density, which is absent in glassy phases induced by
localization in disordered external potentials such as the
Bose glass. To demonstrate this peculiar feature, it is
instructive to consider a variational wave function explic-
itly breaking the translational symmetry of the lattice

hnj��i / exp

�X
i

�ini

�
; (5)

where the variational parameters �i are explicitly site
dependent and tend to (dis)favor the occupation of a given
site. In the spin-glass phase of the bosons, the optimal set
of the variational parameters is highly dependent on the

FIG. 1 (color online). Edwards-Anderson order parameter
(top) and condensate fraction �c=� (middle) as functions of V
at half-filling, computed via the cavity method at different values
of �. In the middle panel �c=� as obtained by SGF at � ¼ 5 is
reported. (Bottom) Scaled spin-glass susceptibility ��SG ¼
�SG=L

5=6 reported as a function of V; standard finite-size-scaling
arguments [22] show that the different curves must intersect at
the spin-glass transition.

FIG. 2 (color online). Finite temperature phase diagram at
half-filling.
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initial conditions associated with the �i, whereas all the
variational states, even with different parameters, have
almost degenerate variational energies. Each set of opti-
mized variational parameters is then representative of one

of the many degenerate ground states of cH . As an ex-
ample, we show in Fig. 3 the variational expectation values
of the site densities for two different solutions resulting
from the minimization of the variational energy with the
method of Ref. [23], a robust stochastic variant of the
Newton method. We further checked, using the zero-
temperature Green function Monte Carlo method [24],
that if one applies the imaginary-time evolution j��i ¼
expð��cH Þj��i to one of these states, the density profile
remains amorphous for a time � that is divergent with the
size of the system.

Conclusions.—The aim of this Letter is to show the
existence of a stable superglass phase in a lattice model
of geometrically frustrated bosons, in the absence of
quenched disorder in the Hamiltonian. This has been
done by combining the analytical solution of the model
via the quantum cavity method and numerical simulations
via quantum Monte Carlo calculations. The glass phase we
found is very different from the usual Bose glass, since the
latter is driven by localization effects in the presence of an
external disorder and is then insulating, while the former is
driven by self-induced frustration on a disordered lattice
and displays Bose-Einstein condensation. This results in a
coexistence of a large number of degenerate amorphous
ground states, whose existence we showed by a variational
argument corroborated by quantum Monte Carlo calcula-
tions. We expect, by analogy with the classical case [17],
that the glassy phase found here will exist also on regular
finite dimensional lattices, provided the interactions are
modified to induce sufficient geometrical frustration. In
that case, its properties should be very similar to the one
showed by metastable superglasses observed both in nu-
merical simulations [6] and experiments [8] on helium 4.
The main difference is that, due to the randomness of the

underlying lattice, the superglass studied here is a truly
stable equilibrium state, allowing for a much more precise
characterization of its properties.
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Note added in proof.—After this work was completed,

we became aware of the paper [25] where related results
have been obtained.
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[17] G. Biroli and M. Mézard, Phys. Rev. Lett. 88, 025501

(2001).
[18] M. P. Ciamarra, M. Tarzia, A. de Candia, and A. Coniglio,

Phys. Rev. E 67, 057105 (2003).
[19] N. V. Prokof’ev, B.V. Svistunov, and I. S. Tupitsyn, Phys.

Lett. A 238, 253 (1998).
[20] S.M.A. Rombouts, K. Van Houcke, and L. Pollet, Phys.

Rev. Lett. 96, 180603 (2006).
[21] V. G. Rousseau, Phys. Rev. E 77, 056705 (2008); V. G.

Rousseau, Phys. Rev. E 78, 056707 (2008).
[22] M. Guo, R. N. Bhatt, and D.A. Huse, Phys. Rev. Lett. 72,

4137 (1994).
[23] S. Sorella, Phys. Rev. B 71, 241103(R) (2005).
[24] S. Sorella and L. Capriotti, Phys. Rev. B 61, 2599 (2000).
[25] K.-M. Tam, S. Geraedts, S. Inglis, M. J. P. Gingras, and

R.G. Melko, arXiv:0909.1845.

FIG. 3 (color online). Variational expectation values of the site
density for different sets of the optimized parameters at half-
filling density for L ¼ 80 and V ¼ 4.
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