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The nonlinear wave pattern generated by a localized pressure source moving over a liquid free surface
at speeds below the minimum phase speed (cp;,) of linear gravity-capillary waves is investigated
experimentally and theoretically. At these speeds, freely propagating fully localized solitary waves, or
“lumps,” are known theoretically to be possible. For pressure-source speeds far below c,;,, the surface
response is a local depression similar to the case with no forward speed. As the speed is increased,
a critical value is reached c. = 0.9¢;, where there is an abrupt transition to a wavelike state that features
a steady disturbance similar to a steep lump behind the pressure forcing. As the speed approaches c¢;,, a
second transition is found; the new state is unsteady and is characterized by continuous shedding of lumps

from the tips of a V-shaped pattern.
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Solitary waves are prominent nonlinear features of dis-
persive wave systems in various areas of physics [1-3].
Many key advances in understanding solitary waves were
initiated by studies of waves on the free surface of a liquid.
Most attention has been paid to solitary waves of the
Korteweg—De Vries type [4,5], which bifurcate in the
shallow-water limit. A different class of solitary waves,
however, is possible on deep water [6-9] in the presence of
gravity and surface tension; they bifurcate from linear
sinusoidal waves at the minimum gravity-capillary phase
speed, ¢, = +2(0g/p)"/4, and propagate at speeds less
than c;, (g is the gravitational acceleration, p the fluid
density, and o the surface tension). In dimensionless form,
using L = (o/pg)'/? as the length scale and L/c,y, as the
time scale, the dispersion relation for waves with fre-
quency @ and wave number k is

w? = %k(l + 12, (1)

and the minimum of the phase speed w/k occurs at k =
kmin = 1. Theoretically, ignoring viscous dissipation, two
solitary-wave solution branches bifurcate at c;,, but only
waves of depression are stable to longitudinal perturba-
tions [10,11]; they, however, turn out to be unstable to
transverse perturbations [12]. This instability results in
the formation of fully localized solitary waves, so-called
“lumps” [13], of depression; these bifurcate at c,;, as well
[14,15] and are stable at finite steepness [16]. On the
experimental side, 2D steep-depression solitary waves
have been generated by using an air jet from a narrow
slit as forcing over a current with speed below ¢, [17];
however, persistent unsteadiness of the response due to
cross-stream disturbances was also noted. In this Letter,
we report on an experimental and theoretical investigation
of gravity-capillary lumps generated by a localized pres-
sure source moving at speeds below ¢ ;.
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The experiments were carried out in a water tank 7.3 m
long and 76 cm wide with water depth of approximately
60 cm. The tank has glass walls and bottom for optical
access. The surface tension was measured in situ with a
Willhelmy plate and remained at o = 73 dyn/cm through-
out the experiments. A pipe with inner diameter D =
2.5 mm was mounted vertically to a carriage that rides
on top of the tank. The open end of the pipe was positioned
I cm above the water surface. The carriage was towed at
various speeds by a servomotor with a precision of better
than 0.3%. We define a speed parameter, a = ¢/cCpin,
where c¢ is the speed of the pipe-carriage assembly and
Cmin = 23 cm/s is the minimum phase speed defined
above. A pressure disturbance is made on the water surface
by connecting a pressurized air line to the 2.5-mm tube.
The air flow rate was controlled with a flow metering valve
and we define a nondimensional forcing parameter, € =
hy/D, where h is the depth of the depression created by
the air forcing when the carriage is stationary. In these
experiments, € = 0.43. The resulting wave pattern was
measured using a high-speed camera combined with a
shadowgraph technique.

To understand the qualitative change in the shape of the
free surface, Fig. 1 shows patterns that form as the pipe is
towed at various speeds. The pictures were taken with the
high-speed camera viewing the water surface from above.
The images were backlit using a white light source to
create contrast; roughly speaking, the dark patterns repre-
sent downward sloping faces that are blocked from the
light and the bright patterns are ridges or crests that are
well illuminated. Each photo is from a separate experi-
ment, and the forcing is moving from right to left. At low
speeds, there is a symmetric circular depression located
directly beneath the air jet, Fig. 1(a). We call this configu-
ration state I. As the speed is increased, the response
becomes asymmetric and a stronger depression forms be-
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FIG. 1. Images of the wave pattern taken by the high-speed
camera from above the water surface. The pressure forcing is
moving from right to left. (a) a = 0.905, (b) a = 0.927,

() @ =0.948, (d) a =0.970, (e) o =0.981, (f) o = 1.03.
Each photo is from a separate experiment.

hind the air jet [Fig. 1(b)]. This trailing disturbance is
longer in the cross-stream than the streamwise direction
and is qualitatively similar to a depression gravity-
capillary lump of finite steepness [15]; as the speed is
increased further, the disturbance moves farther behind
the air jet [Figs. 1(b)-1(d)]. We refer to this asymmetric
pattern as state II. Eventually, as the towing speed ap-
proaches ¢, the trailing disturbance completely detaches
from the forcing, leading to the formation of a time-
dependent V shape as in 1(e). We refer to this pattern as
state III. As the towing speed exceeds cp;,, the classic
wave radiation ‘“wedge” is formed, with waves both in
front of and behind the pressure forcing [1(f)].

These images should be considered in conjunction with
Fig. 2 which shows the peak depth of the pattern /;,,
normalized by h, versus «. Each point in Fig. 2 is from a
different experimental run. For small values of « the
response is essentially linear, as in Fig. 1(a). However, at
a critical value of the speed parameter, a,. = 0.9, there is a
distinct jump in amplitude which coincides with the tran-
sition from the linear, localized, symmetric response
(state I) to the nonlinear, extended, asymmetric response
(state II). In the vicinity of this transition point, the re-
sponse exhibits time-dependent behavior, oscillating be-
tween state I and II, but the wave pattern appears to become
steady again for & > «,. For @ = (.95, a second transition
is observed; the asymmetric pattern of state I gives way to
the time-dependent V-shaped behavior of state III. The
wave pattern in state III has a well-defined cycle.
Figure 3 shows images of the water surface as the wave
passes through one of these cycles. Initially the wave has a
V shape as shown in Fig. 3(a). The pattern then stretches
out as two disturbances are shed from the tips of the V [3(b)
and 3(c)] producing a more localized, linear response
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FIG. 2 (color online). Normalized maximum depth, Ap,/ho
versus «. Each data point is taken from a different experiment.
The solid line connects the average measurement at each value
of «. For conditions where the pattern can be either in state I or
state II (the lower curve and upper curve, respectively) the
average was only made among the points in the same state.

[3(d)]. The nonlinear response quickly grows again and
the V-shaped pattern is observed once more [3(e) and 3(f)].

Turning now to the theoretical investigation, rather than
the full nonlinear viscous water-wave equations, our analy-
sis is based on a simple model equation that combines the
main effects governing the response, namely, the interplay
of nonlinear and dispersive effects along with viscous
damping. On kinematic grounds [18], a forcing disturbance
moving along x with speed near c,;, generates waves with
wave vectors kK = (k, I) close to k,,;, = (1, 0). For a left-
going source as in the experiment, expanding the disper-
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FIG. 3. Sequence of images showing the ‘““shedding” oscilla-
tion of the wave pattern in state III from above the surface for
a = 0.981. The images are separated by 0.36 s in time.
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sion relation (1) to second order around k.;, [19] and
adding an imaginary part representing the wave decay
rate due to viscous damping [20] yields

0= —iplk|? - %sgn(k)(l Lok R 2B, @)
The parameter # = v(4g)"/*(a/p)~%*, v being the kine-
matic viscosity; in cgs units, v = 0.01, g =981, p =1,
and o = 73, so 7 = 0.003. Finally, combining Eq. (2) with
a moving pressure forcing, Ap(¢,y), € = x + at, and
assuming quadratic nonlinearity [19], the following equa-
tion for the free-surface elevation n(&, y, ) is obtained:

B 1
N, — (e + M) — (5 - a)ﬂg — B(n?)¢
1
- ZH{”Igg +2m,, — n}=Aps. (3)

Here, A denotes the peak amplitude of the applied forcing
and H{f} = F~'{—isgn(k)F{f}} stands for the Hilbert
transform, with

Fif) = % [:’; Flx)e*dx

being the Fourier transform. The coefficient of the non-

linear term in Eq. (3) is set to B = 4/11/2/8. This ensures
that, for # = 0 and « slightly below the bifurcation point
a = 1, free lump solutions of Eq. (3) agree, to leading
order, with their weakly nonlinear counterparts of the full
water-wave equations [14]; for finite steepness, however,
Eq. (3) significantly overpredicts the peak amplitude of
solitary waves of potential-flow theory [7]. Nonetheless, as
will be seen, Eq. (3) does capture the essential nonlinear
features of the wave patterns brought out by the
experiment.

The model equation (3) was solved numerically as an
initial-value problem, starting from rest and turning on
the forcing impulsively. The numerical solution tech-
nique used a spectral approximation in space, combined
with a predictor-corrector Euler time stepping. In all
computations, we used the Gaussian forcing p(¢,y) =
exp(—2&% — 2y?). Several runs were made for values of
the forcing amplitude in the range 0.035 = A = (0.283 and
for forcing speeds below as well as slightly above c,
(0.707 = a = 1.047). For weak forcing (A < 0.07), the
response reaches steady state at all speeds and is essentially
linear: a symmetric depression confined in the vicinity of
the forcing is seen when « < 1, while a radiating pattern,
with relatively shorter waves ahead and longer waves
behind the source, is generated for a > 1. For stronger
forcing (A > 0.07), the response remains essentially linear
if the forcing speed is well below c;,; but, as « is
increased, nonlinear effects suddenly come into play above
a critical speed «, <1, where transition to a nonlinear
state takes place.

For comparison with the experimental observations dis-
cussed above, we choose A = 0.212; for this value of A,
the critical speed a, = 0.9, consistent with the experiment
for the forcing amplitude € = 0.43. Figure 4 shows plots of
computed wave patterns for six different speeds corre-
sponding to the experimental conditions in Fig. 1. For @ =
0.905, slightly below «,, the response is essentially linear,
consistent with Fig. 1(a). Once the critical speed is crossed,
however, the pattern becomes markedly asymmetric, as a
lumplike disturbance appears on the downstream side of
the forcing; moreover, this transition is accompanied by a
jump in the response amplitude, in qualitative agreement
with Fig. 2. Increasing « past «,. causes the disturbance to
move further downstream, in line with the experimentally
observed state II in Figs. 1(b)-1(d). It should be noted,
however, that the computed wave patterns oscillate peri-
odically (with period of roughly 1 s) between the finite-
amplitude state displayed in Figs. 4(b)—4(d) and a small-
amplitude state confined close to the forcing; experimen-
tally, on the other hand, state II exhibits oscillatory behav-
ior only for speeds in the immediate vicinity of «,.
Increasing « further, a second transition occurs to a
V-shaped nonlinear pattern, Fig. 4(e), consistent with
state III in the experiment, Fig. 1(e). This new state, which
is unsteady according to both the observations and the
computations, involves periodic shedding of lumplike dis-
turbances downstream of the forcing. This is seen more
clearly in Fig. 5, which displays snapshots of the computed
response for & = 0.981 at six times, separated by 0.36 s,
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FIG. 4. Computed wave patterns for the six forcing speeds
corresponding to the images in Fig. 1. Equation (3) was inte-
grated numerically starting from rest. In (a), steady state is
reached; for the speeds in (b)—(f), the generated patterns were
not steady and are displayed at specific times: (b) t = 1.92 s,
(©)t=205s,(d)t=225s,(e) t=504s,(f) 1 =2s.
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FIG. 5. Plots at six different time instants of the computed
wave pattern for speed a = 0.981, corresponding to the se-
quence of images of state III in Fig. 3. In (a) + = 4.68 s and
the following plots [(b)—(f)] are separated by 0.36 s. Note the
shedding of lumps which are quickly damped as they propagate
behind the forcing.

corresponding to the sequence of images in Fig. 3. Finally,
for @ > 1 [Fig. 4(f)], the computed response does not
involve lumps and is similar to the pattern observed ex-
perimentally for speeds above c,;, [Fig. 1(f)].

In summary, we have investigated the free-surface wave
pattern generated by a localized pressure source moving at
a speed below the minimum phase speed for gravity-
capillary waves, cp;,. High-speed photographs and nu-
merical results from a simple model equation reveal that
fully localized solitary waves, or lumps, can play an im-
portant part as c,;, is approached. Specifically we identify
three distinct types of behavior. First, at speeds far below
Cmin» the response is essentially linear; a steady depression
is observed that is locally confined and symmetric relative
to the forcing, and the response amplitude depends weakly
on the forcing speed. Second, at a critical speed close to
Cmins transition to a nonlinear steady state occurs; the
maximum response amplitude experiences a jump as the
wave pattern becomes asymmetric and a steep gravity-
capillary lump forms behind the applied forcing. Third,
at a speed closer to (but still below) c,,;,, @ new transition

takes place to an unsteady nonlinear response involving
shedding of these lumps downstream. The problem of
gravity-capillary waves is prototypical of dispersive wave
systems that feature phase-speed minima at nonzero wave
numbers, and these results are likely to have implications
in other physical settings [21-23].
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