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We describe the breakup of a confined gas thread in a cross-flowing stream of liquid at capillary

numbers Ca< 10�2. The breakup is initiated, not by a Plateau-Rayleigh instability, but by liquid that

flows from the tip of the thread to the neck where pinch-off occurs. This flow, faster than previously

estimated, is driven by different curvatures at the tip and neck and runs through large gaps between thread

and channel walls. Understanding how these curvatures evolve during bubble formation leads to accurate

predictions of the moment of pinch-off.
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The formation of bubbles and droplets from a continu-
ous thread has been a celebrated problem in fluid mechan-
ics since the seminal works of Rayleigh and Plateau [1]
that explain the kitchen-sink experiment of a dripping
faucet as a capillary instability, driven thermodynamically
by the minimization of surface energy, where the size of
the drop is determined by the wavelength of the fastest
growing disturbance. Recently, microfluidic devices that
coflow immiscible fluids to generate microbubbles and
microdroplets have been developed in geometries such as
T junctions [2,3] and flow-focusing devices [4]. In such
geometries where the thread touches the walls, the mono-
dispersity of bubbles is superior to that of those generated
in unconfined flows. This is attributed to an absence of
nonlinear dynamics in the breakup [5]. These monodis-
perse microbubbles and microdroplets of picoliter and
nanoliter volume are indispensable in applications such
as ‘‘digital’’ microfluidics, high-throughput chemical syn-
thesis, medical screening, and contrast agents [6].

Confinement is most important at low values of the
capillary number (Ca ¼ �U=�, with velocity of the liquid
U, surface tension �, and viscosity �). When Ca< 10�2, a
thread can grow to occupy most of the channel cross
section (as shown in Fig. 1), instead of being sheared off
by the liquid early in its growth and remaining small,
which is what happens at high Ca [7]. Experiments show
that a growing thread of gas is squeezed initially such that
the radius of the neck of the thread decreases linearly in
time. Then, at a geometry-dependent moment, the neck of
the thread collapses at an accelerated tempo. An important
practical question is how and when the pinch-off occurs,
because that determines the size of the bubbles.

In this Letter, we resolve a debate on this rapid thread
collapse. On a fundamental level, the physical mechanism
that triggers it is still unclear. One view is that the neck, as
soon as it detaches from the wall, can be approximated as a
detached thread. Such detached threads are always un-
stable in round and rectangular channels [8]. Dollet et al.
[9] interpreted pinch-off using a linear stability analysis,
based on their experimental finding that the start of the

rapid collapse of the neck coincides with the ‘‘lift-off’’ of
the shrinking thread from the wall. Another view, argued
by Garstecki et al. [10], is that the bubble remains stable as
the neck starts to collapse, evolving near the neck in
quasistatic equilibria of minimal surface energy, in contrast
with the nonequilibrium Plateau-Rayleigh instability. In
their analysis, the rapid constriction gives a false impres-
sion of a small disturbance that grows exponentially, and
the constriction occurs solely because the coflowing liquid
cannot bypass the growing bubble, leaving it no option
other than to squeeze the neck. To support their argument,
they have numerically calculated equilibrium shapes of the
neck with thread volume as a free parameter, noting that
the neck rapidly collapses below a certain volume.
Interestingly, this calculation also predicted a rapid con-
striction as soon as the thread releases from the wall.
As the experimental evidence in flow-focusing devices

seems to support different theories, we use an alternative
geometry, depicted in Fig. 1. We demonstrate here that the
thread remains stable as it detaches from the wall. Rather,
the collapse of the thread is triggered by a sudden flow of
liquid to the neck from the tip of the thread, which has to
date been ignored for confined bubble formation.

FIG. 1 (color online). (a) Sketch of a bubble growing at a
planar T junction with height h and widths w and win. The
bubble does not fully occupy the channels but leaves gutters with
curvature a�1 and length Lgutter. (b) Micrograph showing the

radii of curvature r (out-of-plane) and R (in-plane). We mea-
sured 2r as the shortest distance from the interface to the lower-
right corner of the junction and R by fitting a quarter of a circle
to the interface, as in [20].
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Crucially, channels that confine bubble-forming threads
are rectangular (a few noted exceptions, e.g., Ref. [11],
use axisymmetric devices), such that gutters of liquid exist
in the corners [12]. These gutters exist with or without flow,
and the usual assumption at small Ca is that their shape is
hardly affected by flow. Flow in these gutters is driven by
the difference in pressure over the growing thread, which to
leading order depends on the difference in curvature � via
the Laplace-Young equation p ¼ ��. Velocities in the
gutters, relative to that of the growing thread itself, depend
strongly on the shape of the gutters and channels, as
described by Wong [13]. As we show below, we observe
velocities that are comparable to those of the thread at
Ca� 10�3. At even lower Ca, Ca � 10�4, another regime
appears where the dominant velocity will actually be in the
gutters, making it hard to move the bubble [14].

We created microchannel networks in polydimethylsi-
loxane on glass slides, using standard soft lithography
methods, featuring T-junction geometries of different
heights h, liquid channel widths w, and gas channel widths
win. Ethanol (99:5 v=v%) was used as the liquid without
surfactants, with viscosity � ¼ 1:2 mPa s, surface tension
� ¼ 0:02 N=m, and equilibrium contact angle �e < 10�.
The liquid feed rate qL was controlled using a syringe
pump in the range 1–32 �L=min . A steady flow of air
qG, 1–32 �L=min , was fed into the gas channel through a
2-m-long capillary of 100 �m internal diameter. The
shape of the growing bubble was recorded with a high-
speed camera at 10 000 frames per second. In one geome-
try, the velocities in a plane parallel to the top wall, at 0:1h
from the top wall, were recorded with microparticle image
velocimetry, as described in [15].

The formation of bubbles in a T junction follows two
stages [3]: initially, the gas enters into the main channel
until it meets the wall opposite of the gas feed channel.
This filling stage is followed by a squeezing stage [inter-
faces a–f in the inset of Fig. 2(a)] in which the interface in
the junction is squeezed by the incoming liquid while the
thread grows into the main channel. We recorded the time
evolution of principal radii of curvature r and R behind the
forming bubble, as indicated in Fig. 1. At first, the neck
shrinks at an almost constant speed dr=dt. We determine
graphically from rðtÞ a critical value rcrit (interface g) that
marks the crossover from this linear squeezing to a rapid
collapse of the neck (interface h), which we will address
shortly. First, we note that the bubble does not completely
seal off the channel for the liquid. The solid lines in
Fig. 2(a) indicate the interface evolution ðRðtÞ; rðtÞÞ for
the hypothetical case that the liquid pushes the interface
without leakage. The interface fits to a toroid, such that

dR=dt ¼ 16qL=hð4� �Þð8Rþ h�Þ and 2r��¼
R�½ðR�wÞ2þðR�winÞ2�1=2 for R> win and 2r� � ¼
½w2 þ ðR� winÞ2�1=2 otherwise (� � 0:1w accounts for
the rounded corners of the T junction). The dashed line
represents the case that 1=10 of the incoming liquid by-
passes the bubble, which agrees best with the experiment,

at least in a time-averaged analysis. The leakage is negli-
gible initially and increases until the moment of pinch-off.
Whereas we infer the leakage from Fig. 2(a) indirectly,

instantaneous velocity fields in Fig. 3 confirm it. When the
thread has just detached from the wall, in Fig. 3(a), the ve-
locity in the gutters is significant and directed downstream.
The detachment of the neck is evident from the liquid,
rushing into the gap that has opened between the thread
and the wall. Then, consider a snapshot during collapse,
just before the thread breaks, in Fig. 3(b). The velocity in
the gutters has reversed direction, such that liquid flows

Start 3-D 
constriction

  Onset 
  rapid collapse

µ

∆ γ

    

FIG. 2 (color online). (a) Evolution of the radii of curvature r
and R. The full line indicates how fast the interface would be
squeezed without leakage through the gutters; the dashed line is
based on a leakage of 10% of the incoming flow qL.
(b) Evolution of the pressure drop over the gutters, calculated
from (a) and Eq. (1), indicating that the collapse coincides with
reversal of pressure drop in the gutters. [ðh; w;winÞ ¼
ð56; 100; 133Þ �m, ðqL; qGÞ ¼ ð2; 17Þ �L, Ca ¼ 3� 10�4.]

FIG. 3. In-plane velocity at 0:1h from the top wall, with a
drawing of the neck shape, before and after the start of the rapid
collapse. (a) The thread has lifted from the wall, and liquid flows
through the gap between the thread and the wall. Flow in the
gutters runs towards the tip. (b) The thread has started to
collapse. Liquid now runs from the tip to the neck through all
four gutters. (h ¼ w ¼ win ¼ 800 �m, Ca ¼ 5:7� 10�4.)
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back to the neck from the tip. In the following, we show
that this reversal can be understood in terms of the pressure
profile around the thread. With the pressure in the gas as
the reference pressure, the pressure in the liquid at the
squeezing interface is given by p ¼ �½1=Rþminð2=h;
1=rÞ�. Similarly for the liquid at the tip, p ¼ �ð2=hþ
2=wÞ, such that the pressure drop over the gutters is

�p ¼ �

�
2

h
þ 2

w
� 1

R
�min

�
2

h
;
1

r

��
: (1)

Figure 2(b) shows the evolution of this pressure, which
increases initially due to the increase of R and then drops
as the out-of-plane radius of curvature decreases when
the neck detaches from the top and bottom walls.
Subsequently, the pressure difference changes sign and
the flow in the gutters reverses to drive liquid back to the
squeezed neck. It is at this moment of flow reversal that the
thread starts to collapse.

Before we analyze when this flow reversal occurs in
other devices, we observe here that our results are incom-
patible with the view that the collapse is initiated by a
capillary instability of the gas thread upon local detach-
ment from the walls at 2r ¼ h, which occurs in Fig. 2(a) at
tqL=ðw2hÞ � 1:9without any appreciable change in dr=dt.
A thread that touches the channel walls on both sides of a
neck is not equivalent, as far as its stability goes, to a thread
as thin as the neck that nowhere touches the walls.

We now show that understanding the mechanism per-
mits a prediction of the collapse in different T junctions.
Based on Eq. (1), the reversal of flow that triggers the rapid
collapse of the thread occurs at 2rcrit ¼ hw=ðwþ hÞ. In
deriving this criterion, we neglect the smallest term 1=R in
the equation, strictly valid because hw=2Rðhþ wÞ � 1
when h=w � 1 and R * 2w at pinch-off. Furthermore, in
the final stages (interfaces f-h), the local in-plane curva-
ture at the neck, R0, becomes concave and deviates from R
as defined in Fig. 1. Yet here, too, jR0j * 2w and
hw=2R0ðhþ wÞ changes sign but, importantly, remains
small. With this simplification, the collapse becomes in-
sensitive to the shape of the gas inlet channel. We have
repeated the measurements in a range of T-junction ge-
ometries (0:1< h=w < 1; 0:33<win=w < 3). Figure 4
shows excellent agreement with this simplest analysis. In
shallow devices with h � w, the term 2=w can also be
neglected and the criterion simplifies to 2rcrit ¼ h. In
geometries with aspect ratio h=w closer to unity, the term
2=w in Eq. (1) cannot be ignored and the collapse happens
long after the neck has started to constrict three dimen-
sionally, with 2r ¼ h=2 in a channel of square cross sec-
tion. Thus, a solid conclusion can be drawn: the collapse
depends only on the moment of flow reversal in the gutters,
which in turn can be predicted accurately from the geome-
try of the bubble generating device.

It is worth emphasizing that the pinch-off is initiated by
an additional influx—through gutters around the forming
bubble—that depends on the entire shape of the interface.
In the following, we will demonstrate this from experi-

ments in which the bubble shape far from the neck is varied
while keeping the local geometry at the neck unchanged.
We created a device, shown in Fig. 5, with a slowly
increasing channel width downstream of the T junction.
We could now independently vary the curvature at the tip
of the thread by playing with the feed rates of the gas and
liquid [16]: increasing qG or decreasing qL grows the
bubble deeper into the channel before it pinches. We
recorded the principle radii of curvature at the tip and the
squeezed interface as before and measured at the onset of
collapse the neck radius rcrit and the distance x that the
bubble has traveled. We plot these together in Fig. 5. Now a
bubble-length dependent radius of curvature at the tip
wtipðxÞ appears in the collapse criterion 2rðxÞ ¼ hwtipðxÞ=
½wtipðxÞ þ h�, plotted in Fig. 5 using wtip ¼ wþ 2x tan�.

A reduction of bubble curvature far from the neck triggers
an earlier flow reversal that leads to an earlier pinch-off.
This also teaches that flow reversal causes pinch-off, not

FIG. 4 (color online). Onset of the rapid collapse 2rcrit=w as a
function of the ratio h=w. The theoretical prediction 2rcrit=w ¼
h=ðwþ hÞ describes when the flow reverses in the gutters. The
line 2rcrit=w ¼ h=w describes when the thread detaches from the
wall. The error bars reflect the uncertainty in determining the
sudden change of dr=dt in graphs such as Fig. 2(a).

FIG. 5 (color online). Neck radius at the onset of collapse for a
bubble that expands downstream of the T junction. Error bars are
as in Fig. 4. We varied the liquid feed rate to drive the bubble
further into the channel, and we plot the neck radius here versus
the distance x=w that the bubble has traveled into the expanding
channel at the start of collapse. Diverging channel:
ðh; w0; winÞ ¼ ð49; 71; 118Þ �m, � ¼ 7�, 3 �L=min<qL <
16 �L=min . Straight channel: ðh;w;winÞ¼ ð75;100;300Þ�m,
ðqL; qGÞ ¼ ð10; 17Þ; ð16; 15Þ; ð32; 15Þ �L=min .
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vice versa. We have included in Fig. 5 the critical radius at
different bubble lengths in a device with straight channels,
where both wtip and rcrit do not vary with bubble length. It

is crucial to include the shape of the entire bubble in the
analysis—a mechanism that considers only the necking
region, whether stable or not, could never explain these
experiments. In this light, it would be interesting to revisit
bubble and droplet formation in flow-focusing devices
using micrographs of the entire growing droplet.

Up to now, we have focused on the onset of collapse,
which depends on the sign of the pressure drop over the
gutters rather than the absolute values. We now discuss the
velocity in the gutters. An initial estimate would predict
that the gutter velocity behaves as ugutter / a2�p=�Lgutter,

with as proportionality constant a resistance that depends
on the geometry of the gutter. Numerical values for this
resistance have been obtained by Wong [12], based on a
hydrostatic interface shape in the gutter. We have tried
unsuccessfully to find agreement for our experiments
with this resistance. Instead we found, invariably, that the
experimental velocity was an order of magnitude higher
than expected. Equally remarkable, the velocity in the
gutters increases with increasing bubble length: Fig. 2(a)
shows that initially, the squeezing is adequately described
without leakage. In our view, these observations indicate
that the interface in the gutter rearranges such that the
resistance decreases. Indeed, recent simulations of bubbles
in shallow channels [17] show that liquid migrates from the
lubricating film on the top and bottom wall to the gutters
(resembling the drainage of Plateau borders in foams). This
significantly reduces the flow resistance and makes the
resistance much less dependent on the aspect ratio h=w.
Our observation from dR=dt is that the time-averaged
leakage is approximately 0:1qL, independent of h=w.
This has important implications beyond bubble generation:
the connectivity of pores is a crucial parameter in micro-
scopic models for two-phase flow in porous media [18],
relevant in fields such as oil recovery and lung opening.
Our finding, that liquid fluxes around ‘‘blocking’’ bubbles
are much more pronounced when these bubbles move,
helps to understand fluid rearrangement in such networks.
Top-view images can give the false impression that a
bubble blocks a channel, whereas in reality fluid segments
are much more interconnected.

We have shown that, in confining geometries, reverse
flow around a thread of gas determines when a neck
collapses rapidly to release a bubble. This flow, which
runs in the direction opposite of the main flow, depends
on the curvature of the tip of the thread. As a result, one
must consider the confining geometry around the entire
thread and not only where the thread will break. This
understanding of flows in the gutters is crucial in many
flow problems of bubbles and droplets in confined geome-
tries, such as bubble splitting [19]. The challenge is now to
use the qualitative understanding of interface rearrange-
ment in the gutters to quantify fluxes around bubbles and

droplets during formation, travel, and breakup in micro-
fluidic channel networks and porous media. From a prac-
tical point of view, our analysis describes the evolution of
the neck in terms of geometric parameters h, w, and win.
Provided the initial condition of the squeezed bubble is
known, this allows a prediction of the size of bubbles
without empirical constants, a useful extension of the
scaling rule for bubble volume [3].
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Expérimentale et Théoretique des Liquides Soumis aux
Seules Forces Moléculaires (Gautier-Villars, Paris, 1873).

[2] T. Thorsen et al., Phys. Rev. Lett. 86, 4163 (2001).
[3] P. Garstecki et al., Lab Chip 6, 437 (2006).
[4] S. L. Anna, N. Bontoux, and H.A. Stone, Appl. Phys. Lett.
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