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We introduce a framework of optomechanical systems that are driven with a mildly amplitude-

modulated light field, but that are not subject to classical feedback or squeezed input light. We find

that in such a system one can achieve large degrees of squeezing of a mechanical micromirror—signifying

quantum properties of optomechanical systems—without the need of any feedback and control, and within

parameters reasonable in experimental settings. Entanglement dynamics is shown of states following

classical quasiperiodic orbits in their first moments. We discuss the complex time dependence of the

modes of a cavity-light field and a mechanical mode in phase space. Such settings give rise to certifiable

quantum properties within experimental conditions feasible with present technology.
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Periodically driven quantum systems exhibit a rich be-
havior and display nonequilibrium properties that are ab-
sent in their static counterparts. By appropriately
exploiting time-periodic driving, strongly correlated
Bose-Hubbard-type models can be dynamically driven to
quantum phase transitions [1], systems can be dynamically
decoupled from their environments to avoid decoherence
in quantum information science [2], and quite intriguing
dynamics of Rydberg atoms strongly driven by micro-
waves [3] can arise. It has also been muted that such
time-dependent settings may give rise to entanglement
dynamics in oscillating molecules [4]. A framework of
such periodically driven systems is provided by the theory
of linear differential equations with periodic coefficients or
inhomogeneities, including Floquet’s theorem [5].

In this Letter, we aim at transferring such ideas to
describe a new and in fact quite simple regime of opto-
mechanical systems, of micromirrors as part of a Fabry-
Perot cavity [6–9], and also to one of the settings [10–14]
that are the most promising candidates in the race of
exploring certifiable quantum effects involving macro-
scopic mechanical modes. This is an instance of a regime
of driving with mildly amplitude-modulated light. We find
that in this regime, high degrees of squeezing below the
vacuum noise level can be reached, signifying genuine
quantum dynamics. More specifically, in contrast to earlier
descriptions of optomechanical systems with a periodic
time dependence in some aspect of the description, we
will not rely on classical feedback based on processing of
measurement-outcomes—a promising idea in its own right
in a continuous-measurement perspective [15,16]—or re-
sort to driving with squeezed light. Instead, we will con-
sider the plain setting of a time-periodic amplitude
modulation of an input light. The picture developed here,
based in the theory of differential equations, gives rise to a
framework of describing such situations. We find that large
degrees of squeezing can be reached (complementing other
very recent nonperiodic approaches based on cavity-

assisted squeezing using an additional squeezed light
beam [17]). It is the practical appeal of this work that
such quantum signatures can be reached without the ne-
cessity of any feedback, no driving with additional fields,
and no squeezed light input (the scheme by far outperforms
direct driving with a single squeezed light mode): in a
nutshell, one has to simply gently shake the system in
time with the right frequency to have the mechanical and
optical modes rotate appropriately around each other, remi-
niscent of parametric amplification, and to so directly
certify quantum features of such a system.
Time-dependent picture of system.—Before we discuss

the actual time dependence of the driven system, setting
the stage, we start our description with the familiar
Hamiltonian of a system of a Fabry-Perot cavity of length
L and finesse F being formed on one end by a moving
micromirror,

H ¼ @!ca
yaþ 1

2
@!mðp2 þ q2Þ � @G0a

yaq

þ i@
X1

n¼�1
ðEne

�ið!0þn�Þtay � E�
ne

ið!0þn�ÞtaÞ: (1)

Here, !m is the frequency of the mechanical mode with
quadratures q and p satisfying the usual commutation
relations of canonical coordinates, while the bosonic op-
erators a and ay are associated to the cavity mode with

frequency !c and decay rate � ¼ �c=ð2FLÞ. G0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!mÞ

p
!c=L is the coupling coefficient of the radiation

pressure, where m is the effective mass of the mode of the
mirror being used. Importantly, we allow for any periodi-
cally modulated driving at this point, which can be ex-
pressed in such a Fourier series, where � ¼ 2�=� and
� > 0 is the modulation period. The main frequency of the
driving field is !0 while the modulation coefficients fEng
are related to the power of the associated sidebands fPng by
jEnj2 ¼ 2�Pn=ð@!0Þ. The resulting dynamics under this
Hamiltonian together with an unavoidable coupling of the
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mechanical mode to a thermal reservoir and cavity losses
gives rise to the quantum Langevin equation in the refer-
ence frame rotating with frequency !0, _q ¼ !mp, and

_p ¼ �!mq� �mpþG0a
yaþ �;

_a ¼ �ð�þ i�0Þaþ iG0aq

þ X1
n¼�1

Ene
�in�t þ ffiffiffiffiffiffi

2�
p

ain;

(2)

where �0 ¼ !c �!0 is the cavity detuning. �m is here an
effective damping rate related to the oscillator quality
factor Q by �m ¼ !m=Q. The mechanical (�) and the
optical (ain) noise operators have zero mean values and
are characterized by their auto correlation functions which,
in the Markovian approximation, are h�ðtÞ�ðt0Þ þ
�ðt0Þ�ðtÞi=2 ¼ �mð2 �nþ 1Þ�ðt� t0Þ and hainðtÞainyðt0Þi ¼
�ðt� t0Þ, where �n ¼ ½expð@!m

kBT
Þ � 1��1 is the mean thermal

phonon number. Here, we have implicitly assumed that
such an effective damping model holds [18], which is a
reasonable assumption in a wide range of parameters in-
cluding the current experimental regime.

Semiclassical phase space orbits.—Our strategy of a
solution will be as follows: we will first investigate the
classical phase space orbits of the first moments of quad-
ratures. We then consider the quantum fluctuations around
the asymptotic quasiperiodic orbits, by implementing the
usual linearization of the Heisenberg equations of motion
[11,12] (excluding the very weak driving regime).
Exploiting results from the theory of linear differential
equations with periodic coefficients, we can then proceed
to describe the dynamics of fluctuations and find an ana-
lytical solution for the second moments.

If we average the Langevin equations (2), assuming
hayai ’ jhaij2, haqi ’ haihqi (true in the semiclassical
driving regime we are interested in), we have a nonlinear
differential equation for the first moments. Far away from
instabilities and multistabilities, a power series ansatz in

the coupling G0 hOiðtÞ ¼ P1
j¼0 OjðtÞGj

0 is justified, where

O ¼ a, p, q. If we substitute this expression into the
averaged Langevin equation (2), we get a set of recursive
differential equation for the variables Ojð:Þ. The only two

nonlinear terms in Eq. (2) are both proportional to G0,
therefore, for each j, the differential equation for the set of
unknown variablesOjð:Þ is a linear inhomogeneous system

with constant coefficients and �-periodic driving. Then,
after an exponentially decaying initial transient (of the
order of 1=�m), the asymptotic solutions Oj will have the

same periodicity of the modulation [5], justifying the
Fourier expansion

hOiðtÞ ¼ X1
j¼0

X1
n¼�1

On;je
in�tGj

0: (3)

Substituting this in Eq. (2), we find the following recursive
formulas for the time independent coefficientsOn;j, qn;0 ¼
pn;0 ¼ 0, an;0 ¼ E�n=ð�þ ið�0 þ n�ÞÞ, corresponding

to the zero coupling G0 ¼ 0, while for j � 1, we have

qn;j¼!m

Xj�1

k¼0

X1
m¼�1

a�m;kanþm;j�k�1

!2
m�n�2þ i�mn�

;

pn;j¼ in�

!m

qn;j; an;j¼ i
Xj�1

k¼0

X1
m¼�1

am;kqn�m;j�k�1

�þ ið�0þn�Þ ;
(4)

Within the typical parameter space, considering only the
first terms in the double expansion (3), corresponding to
the first sidebands, leads to a good analytical approxima-
tion of the classical periodic orbits, see Fig. 1. On physical
grounds, this is expected to be a good approximation, since
G0 � !m, and because high sidebands fall outside the
cavity bandwidth, n�> 2�. What is more, the decay
behavior of En related to the smoothness of the drive
inherits a good approximation in terms of few sidebands.
Quantum fluctuations around the classical orbits.—We

will now turn to the actual quantum dynamics taking first
moments into account separately when writing any opera-
tor as OðtÞ ¼ hOiðtÞ þ �OðtÞ. The frame will hence be
provided by the motion of the first moments. In this refer-
ence frame, as long as jhaij � 1, the usual linearization
approximation to (2) can be implemented. In what follows,

we will also use the quadratures �x ¼ ð�aþ �ayÞ= ffiffiffi
2

p
and

�y ¼ �ið�a� �ayÞ= ffiffiffi
2

p
, and the analogous input noise

quadratures xin and yin. For the vector of all quadratures we

will write u ¼ ð�q; �p; �x; �yÞT , with n ¼
ð0; �; ffiffiffiffiffiffi

2�
p

xin;
ffiffiffiffiffiffi
2�

p
yinÞT being the noise vector [11,18].

Then the time-dependent inhomogeneous equations of
motion arise as _uðtÞ ¼ AðtÞuðtÞ þ nðtÞ, with

AðtÞ ¼
0 !m 0 0

�!m ��m GxðtÞ GyðtÞ
�GyðtÞ 0 �� �ðtÞ
GxðtÞ 0 ��ðtÞ ��

2
6664

3
7775; (5)

where the real AðtÞ contains the time-modulated coupling
constants and the detuning as GðtÞ ¼ GxðtÞ þ iGyðtÞ,

GðtÞ ¼ ffiffiffi
2

p haðtÞiG0; �ðtÞ ¼ �0 �G0hqðtÞi: (6)

From now on we will consider quasiperiodic orbits only, so
the long-time dynamics following the initial one, when the
first moments follow a motion that is � periodic. Then, A is

FIG. 1 (color online). Phase space trajectories of the first mo-
ments of the mirror (a) and light (b) modes. Numerical simula-
tions for t 2 ½0; 50�� (black) and analytical approximations of
the asymptotic orbits (green or light gray).
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� periodic, and hence AðtÞ ¼ Aðtþ �Þ ¼ P1
n¼�1 Ane

i�nt.
In turn, if all eigenvalues of Að:Þ having negative real parts
for all t 2 ½0; �� is a sufficient condition for stability. From
the Markovian assumption, we have hniðtÞnjðt0Þ þ
njðt0ÞniðtÞi=2 ¼ �ðt� t0ÞDi;j, where D ¼ diagð0;
�mð2 �nþ 1Þ; �; �Þ. The formal solution of Eq. (5) is [5]

uðtÞ ¼ Uðt; t0Þuðt0Þ þ
Z t

t0

Uðt; sÞnðsÞds; (7)

where Uðt; t0Þ is the principal matrix solution of the homo-
geneous system satisfying _Uðt; t0Þ ¼ AðtÞUðt; t0Þ and
Uðt0; t0Þ ¼ 1. From Eqs. (5) and (7), we have as an equa-
tion of motion of the covariance matrix (CM)

_VðtÞ ¼ AðtÞVðtÞ þ VðtÞATðtÞ þD: (8)

Here, the CM Vð:Þ is the 4� 4 matrix with components
Vi;j ¼ huiuj þ ujuii=2, collecting the second moments of

the quadratures. This is again an inhomogeneous differen-
tial equation for the second moments which can readily be
solved using quadrature methods, providing numerical
solutions that will be used to test and justify analytical
approximate results in important regimes. Moreover, now
the coefficients and not the inhomogeneity are � periodic,
AðtÞ ¼ Aðtþ �Þ. Again, we can invoke results from the
theory of linear differential equations to Eq. (8) [5]: we find
that in the long time limit, the CM is periodic and can be
written as VðtÞ ¼ P

nVne
in�t. An analytical solution for

Vð:Þ, is most convenient in the Fourier domain, ~fð!Þ ¼Rþ1
�1 e�i!tfðtÞdt, giving rise to

� i!~uð!Þ þ X1
n¼�1

An~uð!� n�Þ ¼ �~nð!Þ: (9)

If An�0 ¼ 0, corresponding to no modulation, we are in the
usual regime where the spectra are centered around �!m

for the mechanical oscillator and around�� for the optical
mode. The modulation introduces sidebands shifted by
�n�. If the modulation is weak, only the first two side-
bands at �� significantly contribute. For strong modu-
lation also further sidebands play a role: Disregarding
higher sidebands means truncating the summation to
�N [valid if uð!� N�Þ ’ 0]. Then Eq. (9) can be writ-
ten as �Að!Þ �uð!Þ ¼ �nð!Þ, where �uTð!Þ ¼ ð~uTð!�
N�Þ; . . . ; ~uTð!Þ; . . . ; ~uTð!þ N�ÞÞ and �nTð!Þ ¼
ð~nTð!� N�Þ; . . . ; ~nTð!Þ; . . . ; ~nTð!þ N�ÞÞ are 4�
ð2N þ 1Þ vectors, while, in terms of 4� 4 blocks,

�Að!Þ ¼

B�N A�1 A�2 	 	 	 A�2N

A1 B�ðN�1Þ A�1
..
.

A2 A1 B�ðN�2Þ
..
.

..

. ..
.

A2N 	 	 	 A1 BN

2
666666666664

3
777777777775

(10)

with Bk ¼ A0 � ið!þ k�Þ.
We have that �i;jð!;!0Þ ¼ h �nið!Þ �n�j ð!0Þ þ

�n�j ð!0Þ �nið!Þi=2 ¼ P
2N
n¼�2N �ð!�!0 � n�ÞDn, where

D0 ¼ diagðD;D; . . . ; DÞ, then D1 is the matrix that has D

on all first right off diagonal blocks, D2 on the second off
diagonals, with Dn analogously defined, and D�n ¼ DT

n .
We now define the two frequency correlation function
as �Vi;jð!;!0Þ ¼ h �uið!Þ �u�j ð!0Þ þ �u�j ð!0Þ �uið!Þi=2. We

have �Vð!;!0Þ ¼ �A�1ð!Þ�ð!;!0Þ½ �A�1ð!0Þ�y. We are in-
terested only on the central 4� 4 block of �V which we
call ~Vð!;!0Þ ¼ ½ �Vð!;!0Þ�4. We find ~Vð!;!0Þ ¼P

2N
n¼�2N

~Vnð!Þ�ð!�!0 � n�Þ, where ~Vnð!Þ ¼
½ �A�1ð!ÞDn½ �A�1ð!� n�Þ�y�4. This means that the driving
modulation correlates different frequencies, but only if
they are separated by a multiple of the modulation fre-
quency �. By inverse Fourier transforms we recover the
time-periodic expression for the CM, where the compo-
nents Vn are given by the integral of their noise spectra, i.e.,

Vn ¼ 1

2�

Z þ1

�1
~Vnð!Þd!: (11)

Squeezing and entanglement modulation.—We will now
see that the mild amplitude-modulated driving in the cool-
ing regime is exactly the tool that we need in order to arrive
at strong degrees of squeezing, in the absence of feedback
or squeezed light. We will apply the previous general
theory to setting of an optomechanical system that is
experimentally feasible with present technology. In fact,
all values that we assume have been achieved already and
reported on in publications with the exception of assuming
a relatively good mechanical Q factor. The reasonable set
of experimental parameters [9] that we assume is L ¼
25 mm, F ¼ 1:4� 104, !m ¼ 2� MHz, Q ¼ 106, m ¼
150 ng, T ¼ 0:1 K. We then consider the—in the mean-
time well known—self-cooling regime [7] in which a
cavity eigenmode is driven with a red detuned laser �0 ’
!m (with wavelength � ¼ 1064 nm), but we also add a
small sinusoidal modulation to the input amplitude with a
frequency � ¼ 2!m, so twice the mechanical frequency.
To be more precise we choose the power of the carrier
component equal to P0 ¼ 10 mW, and the power of the
two modulation sidebands equal to P�1 ¼ 2 mW.
We approximate the asymptotic classical mean values in

Eq. (3) by truncating the series only to the first terms with
indexes j ¼ 0; . . . ; 3 and n ¼ �1, 0, 1. Figure 1 shows
that, after less than 50 modulation periods, the first mo-
ments reach quasiperiodic orbits which are well approxi-
mated by our analytical results.
In order to calculate the variances of the quantum fluc-

tuations around the classical orbits, we truncate the sum in
Eq. (9) to N ¼ 2 and we apply all the previous theory to
find the covariance matrix V. In Fig. 2 we compare two
regimes: with or without (P�1 ¼ 0) modulation (computed
analytically and numerically). We see that the modulation
of the driving field causes the emergence of significant true
quantum squeezing below the Heisenberg limit of the
mechanical oscillator state and also the interesting phe-
nomenon of light-mirror entanglement oscillations. This
dynamics reminds of the effect of parametric amplification
[13,16], as if the spring constant of the mechanical motion
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was varied in time with just twice the frequency of the
mechanical motion, leading to the squeezing of the me-
chanical mode. For related ideas of reservoir engineering,
making use of bichromatic microwave coupling to a charge
qubit of nanomechanical oscillators, see Refs. [20]. Here, it
is a more complicated joint dynamics of the cavity field
and the mechanical mode—where the dynamics of the first
and the second moments can be separated—which for large
times yet yields a similar effect. Indeed, this squeezing can
directly be measured when considering the output power
spectrum, following Ref. [21], and no additional laser light
is needed for the readout, giving hence rise to a relatively
simple certification of the squeezing. Entanglement here
refers to genuine quantum correlations between the mirror
and the field mode, as being quantified by the logarithmic
negativity defined as ENð	Þ ¼ logk	�k1, essentially the
trace norm of the partial transpose [22,23]. The minimum
eigenvalue of the mirror covariance matrix—the logarithm
thereof typically referred to as single mode squeezing
parameter—is almost constant and this means that the state
is always squeezed but that the squeezing direction con-
tinuously rotates in phase space with the same period of the
modulation. Calling this rotating squeezed quadrature �xR,
a rough estimate of its variance can be calculated in the
rotating-wave approximation (RWA, compare, e.g.,
Ref. [24]),

h�x2Ri¼
1

2
þ �n�2�ðG0�G�1ÞðG0 �nþG�1ð �nþ1ÞÞ

ð�mþ2�ÞðG2
0�G2�1þ2�m�Þ

; (12)

with fGng being defined as GðtÞ ¼ P1
n¼�1 Gne

in�t.
Conclusions and outlook.—In this Letter we have intro-

duced a framework of describing periodically amplitude-
modulated optomechanical systems. Interestingly, such a
surprisingly simple setting feasible with present technol-
ogy [9] leads to a setting showing high degrees of me-
chanical squeezing, with no feedback or additional fields
needed. We hope that such ideas contribute to experimental
studies finally certifying first quantum mechanical effects
in macroscopic mechanical systems, constituting quite an
intriguing perspective.
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FIG. 2 (color online). (a) Variance of the mirror position and
(b) light-mirror entanglement EN as functions of time. In both (a)
and (b) the nonmodulated driving regime (blue or dark gray), the
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analytical estimation (12) in the RWA (orange or light gray).
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