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We investigate an asymmetry in the angular distribution of hard elastic proton-neutron scattering with

respect to the 90� center of mass scattering angle and demonstrate that it’s magnitude is related to the

helicity-isospin symmetry of the quark wave function of the nucleon. Our estimate of the asymmetry

within the quark-interchange model of hard scattering demonstrates that the quark wave function of a nu-

cleon based on the exact SU(6) symmetry predicts an angular asymmetry opposite to that of experimental

observations. We found that the quark wave function based on the diquark picture of the nucleon produces

a correct asymmetry. Comparison with the data allowed us to show that the vector diquarks contribute

around 10% in the nucleon wave function and they are in negative phase relative to the scalar diquarks.

These observations are essential in constraining QCD models of a nucleon.
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For several decades elastic nucleon-nucleon scattering at
high momentum transfer (�t, �u � M2

N GeV2) has been
one of the important testing grounds for QCD dynamics of
the strong interaction between hadrons. Two major observ-
ables considered were the energy dependence of the elastic
cross section and the polarization properties of the
reaction.

Predictions for energy dependence are based on the
underlying dynamics of the hard scattering of quark com-
ponents of the nucleons. One such prediction is based on
the quark-counting rule [1,2] according to which the dif-
ferential cross section of two-body elastic scattering (ab !
cd) at high momentum transfer behaves like d�

dt �
s�ðnaþnbþncþndÞ, where ni represents the number of constit-
uents in particle i (i ¼ a, b, c, d).

For elastic NN scattering, the quark-counting rule pre-
dicts s�10

NN scaling which agrees reasonably well with ex-
perimental measurements (see, e.g., Refs. [3–6]). In
addition to energy dependence, the comparison [7] of the
cross sections of hard exclusive scattering of hadrons con-
taining quarks with the same flavor with the scattering of
hadrons that share no common flavor of quarks demon-
strated that the quark interchange [8,9] represents the
dominant mechanism of hard elastic scattering for up to
intersecting storage rings (ISR) energies (see discussion in
[10]).

For polarization observables, the major prediction of the
QCD dynamics of hard elastic scattering is the conserva-
tion of helicities of interacting hadrons. The latter predic-
tion is based on the fact that the gluon exchange in the
massless quark limit conserves the helicity of interacting
quarks.

The quark-counting rule and helicity conservation, how-
ever, do not describe completely the features of hard
scattering data. The energy dependence of pp elastic cross

section scaled by s10NN exhibits an oscillatory behavior
which indicates the existence of other possibly nonpertur-
bative mechanisms for the scattering [11,12]. These expec-
tations are reinforced also by the observed large
asymmetry, Ann at some hard scattering kinematics [13]
which indicates an anomalously large contribution from
double helicity flip processes. These observed discrepan-
cies, however, do not represent the dominant features of the
data and overall one can conclude that the bulk of the hard
elastic NN scattering amplitude is defined by the exchange
mechanism of valence quarks that interact through the hard
gluon exchange (see, e.g., Refs. [8–10,14]). Quark-
interchange mechanism also reasonably well describes
the 90 c.m. hard breakup of two nucleons from the deu-
teron [15,16].
However, the energy dependence of a hard scattering

cross section, except for the verification of the dominance
of the minimal-Fock component of the quark wave func-
tion of the nucleon, provides rather limited information
about the symmetry properties of the valence quark com-
ponent of the nucleon wave function.
In this Letter we demonstrate that an observable such as

the asymmetry of a hard elastic proton-neutron scattering
with respect to 90� c.m. scattering may provide a new
insight into the helicity-flavor symmetry of the quark
wave function of the nucleon. Namely we consider

A90�ð�Þ ¼ �ð�Þ � �ð�� �Þ
�ð�Þ þ �ð�� �Þ ; (1)

where �ð�Þ—is the differential cross section of the elastic
pn scattering. We will discuss this asymmetry in the hard
kinematic regime in which the energy dependence of the
cross section is �s�10. Our working assumption is the
dominance of the quark-interchange mechanism (QIM)
in the NN elastic scattering at these kinematics.
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Within the QIM the characteristic scattering diagram
can be represented as in Fig. 1. Here one assumes a
factorization of the amplitude into the soft and hard parts.
The soft part contains the initial and final state wave
functions of the nucleons, while the hard part is charac-
terized by a QIM scattering with five hard gluon exchanges
generating an energy dependence in accordance with the
quark-counting rule. In order to attempt to calculate the
absolute cross section of the reaction one needs to sum
hundreds of diagrams similar to the one of Fig. 1. However
for the purpose of estimating the asymmetry in Eq. (1) the
important observation is that the hard scattering kernel is
flavor blind and conserves the helicity. As a result one
expects that angular asymmetry will be generated mainly
through the underlying spin-flavor symmetry of the quark
wave functions of the interacting nucleons.

The amplitude of the hard elastic aþ b ! cþ d scat-
tering of Fig. 1, within quark-interchange approximation,
can be presented as follows:
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where (�i,�
0
i), (�i,�

0
i) and (�i, �

0
i) describe the spin-flavor

quark states before and after the hard scattering, H, and

Cj
�;�;� � h�;�; �jc ji (3)

describes the probability amplitude of finding the �, �, �
helicity-flavor combination of three valence quarks in the
nucleon j [14]. Note that in Eq. (2) the factorization of
nucleon wave functions from the hard scattering term is
justified by the energies, characteristic of the Cj

�;�;� fac-

tors, being of the order of the nucleon mass, while the H
kernel is characterized by the transferred momenta �t,
u � m2

N .

To be able to calculate the Cj
�;�;� factors one represents

the nucleon wave function through the helicity-flavor basis
of the valence quarks. We use a rather general form sepa-
rating the wave function into two parts characterized by
two (e.g., second and third) quarks being in spin zero—
isosinglet and spin one—isotriplet states as follows:
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where j3N and hN are the isospin component and the helicity
of the nucleon. Here ki’s are the light cone momenta of
quarks which should be understood as (xi, ki?) where xi is
a light cone momentum fraction of the nucleon carried by
the i quark. We define �j;h and �I;i3 as helicity and isospin
wave functions, where j is the spin, h is the helicity, I is the
isospin and i3 its third component. The Clebsch-Gordan
coefficients are defined as hj1; m1; j2; m2jj; mi. Here, �I;J

represents the momentum dependent part of the wave
function for (I ¼ 0, J ¼ 0) and (I ¼ 1, J ¼ 1) two-quark
spectator states, respectively. Since the asymmetry in
Eq. (1) does not depend on the absolute normalization of
the cross section, a more relevant quantity for us will be the
relative strength of these two momentum dependent wave
functions. For our discussion we introduce a parameter, 	:

	 ¼ h�1;1i
h�0;0i (5)

which characterizes an average relative magnitude of the
wave function components corresponding to (I ¼ 0, J ¼
0) and (I ¼ 1, J ¼ 1) quantum numbers of two-quark
‘‘spectator’’ states. Note that the two extreme values of 	
define two well-known approximations: 	 ¼ 1 corre-
sponds to the exact SU(6) symmetric picture of the nucleon
wave function and 	 ¼ 0 will correspond to the contribu-
tion of only good-scalar diquark configuration in the nu-
cleon wave function (see, e.g., Refs. [17–20] where this
component is referred as a scalar or good diquark configu-
ration (½qq�) as opposed to a vector or bad diquark con-
figuration denoted by ðqqÞ. In further discussions we will
keep 	 as a free parameter. Note that in our approach
diqaurks represent a qq component of the nucleon wave
function and quarks from the diquark participate in the
hard scattering through the quark interchange. We do not
introduce additional collective vector and scalar diquark
couplings similar to Refs. [20,21].

FIG. 1. Typical diagram for quark-interchange mechanism of
NN ! NN scattering.

PRL 103, 212001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 NOVEMBER 2009

212001-2



To calculate the scattering amplitude of Eq. (2) we
assume the conservation of the helicities of quarks partici-
pating in the hard scattering. This allows us to approximate
the hard scattering part of the amplitude, H, in the follow-
ing form:
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0
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0
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0
2

Fð�Þ
s4

: (6)

Inserting this expression into Eq. (2) for the QIM ampli-
tude one obtains [14]:

hcdjTjabi ¼ TrðMacMbdÞ (7)

with:

Mi;j
�;�0 ¼ Ci

�;��C
j
�0;�� þ Ci

��;�C
j
��0;� þ Ci

���C
j
���0 ; (8)

where we sum over all the possible values of � and �.
Furthermore, we separate the energy dependence from the
scattering amplitude as follows:

hcdjTjabi ¼ hhc; hdjTð�Þjha; hbi
s4

(9)

and define five independent angular parts of the helicity
amplitudes as:

�1 ¼ hþþjTð�Þjþ þi;
�2 ¼ h��jTð�Þjþ þi;
�3 ¼ hþ�jTð�Þjþ �i;
�4 ¼ �h�þjTð�Þjþ �i;
�5 ¼ h�þjTð�Þjþ þi:

(10)

Here the ‘‘�’’ sign in the definition of �4 follows from the
Jacob-Wick helicity convention [22] according to which a
(�1) phase is introduced if two quarks that scatter to ��
�c:m: angle have opposite helicity (see also Ref. [14]).

Using Eqs. (7) and (8) for the nonvanishing helicity
amplitudes of Eq. (10) one obtains: for pp ! pp:

�1 ¼ ð3þ yÞFð�Þ þ ð3þ yÞFð�� �Þ
�3 ¼ ð2� yÞFð�Þ þ ð1þ 2yÞFð�� �Þ
�4 ¼ �ð1þ 2yÞFð�Þ � ð2� yÞFð�� �Þ

(11)

and for pn ! pn:

�1 ¼ ð2� yÞFð�Þ þ ð1þ 2yÞFð�� �Þ
�3 ¼ ð2þ yÞFð�Þ þ ð1þ 4yÞFð�� �Þ
�4 ¼ 2yFð�Þ þ 2yFð�� �Þ

(12)

with �2 ¼ �5 ¼ 0 due to helicity conservation. Here

y ¼ xðxþ 1Þ with x ¼ 2	

3ð1þ 	2Þ (13)

and Fð�Þ is the angular function. Note that the 	 ¼ 1 case
reproduces the SU(6) result of Refs. [10,14]. The results of
Eqs. (11) and (12) could be obtained also through the

formalism of the H spin introduced in Ref. [10]. In this
case the helicity amplitudes are expressed through the
average number of quarks to be found in a given helicity-
spin state. These numbers are directly defined through the
wave function of Eq. (4).
Introducing the symmetric and antisymmetric parts of

the angular function F as follows:

sð�Þ ¼ Fð�Þ þ Fð�� �Þ
2

; að�Þ ¼ Fð�Þ � Fð�� �Þ
2

(14)

and using Eq. (12) for the asymmetry as it is defined in
Eq. (1) one obtains

A90�ð�Þ ¼ 6að�Þsð�Þð1� 2y� 3y2Þ
að�Þ2ð1� 3yÞ2 þ 3sð�Þ2ð3þ 6yþ 7y2Þ : (15)

One can make a rather general observation from
Eq. (15), that for the SU(6) model, (	 ¼ 1, y ¼ 4

9 ) and

for any positive function, að�Þ at � 
 �
2 , the angular asym-

metry has a negative sign opposite to the experimental
asymmetry (Fig. 2). Note that one expects a positive að�Þ
at � 
 �

2 from general grounds based on the expectation

that in the hard scattering regime the number of t-channel
quark scatterings dominates the number of u-channel
quark scatterings in the forward direction.
As it follows from Eq. (15), positive asymmetry can be

achieved only for 1� 2y� 3y2 > 0, which according to
Eq. (13) imposes the following restrictions on 	: 	 < 0:49
or 	 > 2:036. The first condition indicates the preference
of scalar diquarklike configurations in the nucleon wave
function, while the second one will indicate the strong
dominance of the vector-diquark component which contra-
dicts the observations [17–19].
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FIG. 2 (color online). Asymmetry of pn elastic cross section.
SU(6), with 	 ¼ 1 (dotted solid line), diquark-model with 	 ¼ 0
(dashed line), fit with 	 ¼ �0:3 (solid line).
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In Fig. 2 the asymmetry of pn scattering calculated with
SU(6) (	 ¼ 1) and pure scalar-diquark (	 ¼ 0) models are
compared with the data. In these estimates we use Fð�Þ ¼
Csin�2ð�Þ½1� cosð�Þ��2 dependence of the angular func-
tion [23] which is consistent with the picture of hard col-
linear QIM scattering of valence quarks with five gluon
exchanges and reasonably well reproduces the main char-
acteristics of the angular dependencies of both pp and pn
elastic scatterings. Note that using a form of the angular
function based on nucleon form-factor arguments [10,14],
F 	 ½1� cosð�Þ��2 will result in the same angular
asymmetry.

The comparisons show that the nucleon wave function
(4) with a good-scalar diquark component (	 ¼ 0) pro-
duces the right sign for the angular asymmetry. On the
other hand, even large errors of the data do not preclude to
conclude that the exact SU(6) symmetry (	 ¼ 1) of the
quark wave function of the nucleon is in qualitative dis-
agreement with the experimental asymmetry.

Using the above defined angular function Fð�Þ we fitted
A90� in Eq. (15) to the data at�t,�u � 2 GeV2 varying 	
as a free parameter. We used the maximal likelihood
method of fitting excluding those data points from the
data set whose errors are too large for meaningful identi-
fication of the asymmetry. The best fit is found for

	 	 �0:3� 0:2: (16)

The nonzero magnitude of 	 indicates the small but finite
relative strength of a bad or vector diquark configuration in
the nuclear wave function as compared to the scalar di-
quark component. It is intriguing that the obtained magni-
tude of 	 is consistent with the 10% probability of ‘‘bad’’
diquark configuration discussed within the context of bar-
yonic spectroscopy [19].

Another interesting property of Eq. (16) is the negative
sign of the parameter 	. Within the qualitative quantum-
mechanical picture, the negative sign of 	may indicate, for
example, the existence of a repulsion in the quark-diquark
(vector-diquark) channel as opposed to the attraction in the
quark-diquark (scalar-diquark) channel. It is rather surpris-
ing that both the magnitude and sign agree with the result
of the phenomenological interaction derived in the one-
gluon exchange quark model discussed in Ref. [18].

In conclusion, we demonstrated that the angular asym-
metry of hard elastic pn scattering represents a new ob-
servable in probing the symmetry structure of the valence
quark wave function of the nucleon. We demonstrated that
the exact SU(6) symmetry does not reproduce the experi-
mental angular asymmetry of hard elastic pn scattering.
Nucleon wave function consistent with the diquark struc-
ture gives a right asymmetry. The fit to the data indicates
10% probability for the existence of bad or vector diquarks
in the wave function of nucleons. Most importantly, it also
shows that the vector and scalar qq components of the
wave function are in the opposite phase. This indicates the

very different dynamics of q� ½qq� and q� ðqqÞ inter-
actions. One expects our observation to be valid in valence
quark sector for up to ISR energies for which QIM is
expected to be dominant (see, e.g., [10]).
The opposite sign of the vector ðqqÞ and scalar ½qq�

components in the nucleon wave function may have im-
portant implications for different coherent QCD processes
such as form factors and hard exclusive scatterings involv-
ing baryons. These quantities in principle can be checked
in lattice calculations. The angular asymmetry studies can
be extended also to include the scattering of other baryons
such as � isobars (which may have a larger fraction of the
vector diquark component) as well as strange baryons
which will allow us to study the relative strength of ðqqÞ
and ½qq� configurations involving strange quarks. Another
extension of these studies is calculation of elastic p �p
scattering. All these processes could be studied experimen-
tally in new facilities such as J-PARC and GSI-FAIR.
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