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We provide a feasible necessary and sufficient condition for when an unknown quantum operation

(quantum device) secretly selected from a set of known quantum operations can be identified perfectly

within a finite number of queries, and thus complete the characterization of the perfect distinguishability

of quantum operations. We further design an optimal protocol which can achieve the perfect discrimi-

nation between two quantum operations by a minimal number of queries. Interestingly, we find that an

optimal perfect discrimination between two isometries is always achievable without auxiliary systems or

entanglement.
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One of the fundamental features of quantum mechanics
is that it is impossible to distinguish between two non-
orthogonal states perfectly, even when arbitrarily large but
finite copies of states are available. A recent highlight of
this fact is the identification of the quantum Chernoff
bound [1]. In view of this, the perfect distinguishability
of quantum states is completely characterized by the
orthogonality.

A problem closely related to quantum state discrimina-
tion is the discrimination of quantum operations (or inter-
changeably quantum devices), which formalize all
physically realizable operations in quantum mechanics
including unitary operations, quantum measurements,
and quantum channels, etc. The goal of quantum operation
discrimination is to find out the identity of an unknown
device secretly chosen from two known quantum opera-
tions. Recently this problem has received great interest and
many results have been reported (See Refs. [2–8] for a
partial list). It is now clear that distinguishing quantum
operations has many interesting properties that are similar
to that of quantum state discrimination if the device is
probed only once [2–5]. On the other hand, quantum
devices are very different from quantum states in the
following three aspects. First, a quantum device is reus-
able. Second, the input state of quantum device can be
chosen freely, and thus can be entangled with an auxiliary
system or between different uses. Third, perhaps most
importantly, a quantum device can be used in many essen-
tially different ways such as in parallel, in sequential, or in
any other scheme allowed by quantummechanics while the
optimal way to manipulate many copies of quantum states
is uniquely in parallel [1]. Consequently, it is extremely
difficult to identify the behavior of quantum operations
when multiple queries are used.

Several works have been devoted to the perfect distin-
guishability of special quantum operations including uni-
tary operations [3,4,6,7] and projective measurements [8].

Most notably, unitary operations can be identified with
certainty either in parallel [4], or in sequential [6].
Projective measurements also enjoy this kind of perfect
distinguishability [8]. Experimental results concerning
with the perfect discrimination of unitary operations and
measurements have been reported [9]. All these progresses
indicate that the notion of perfect distinguishability of
general quantum operations would be much more compli-
cated and flexible than that of quantum states.
The purpose of this Letter is to provide a complete

characterization of the perfect distinguishability of quan-
tum operations (see Theorem 1 below). We show that two
simple properties are responsible for the perfect discrimi-
nation between two quantum operations within a finite
number of queries. The first property says that these two
quantum operations should produce two quantum states
with nonoverlapping supports upon some input state,
which may be entangled with an auxiliary system. The
second property states that any such two quantum opera-
tions are capable of boosting some two nonorthogonal pure
states, which are provided to the quantum operations as
their respective inputs, into orthogonal states. Both of these
properties can be rephrased into analytical forms in terms
of the Kraus operators and can be verified quite efficiently.
Our result reveals the essential nature of the perfect dis-
tinguishability of quantum operations and thus provides
new insight into this problem. Applying this characteriza-
tion to specific quantum operations, we can directly obtain
many interesting results on the perfect distinguishability of
quantum operations. In particular, a unitary operation U
and a general quantum operation E are perfectly distin-
guishable if and only ifU is not a Kraus operator of E. As a
potential application, we show that the classical data hiding
is possible by encoding the data into quantum devices
instead of quantum states [10].
With the help of the notion of the maximal fidelity, we

further design an optimal protocol which can distinguish
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two quantum operations with a minimal number of queries.
This number can be determined using numerical iteration
techniques. When distinguishing between two isometries
(generalization of unitary operations), the calculation be-
comes quite efficient and an optimal discrimination can
always be achieved without auxiliary systems or entangle-
ment by using the theory of q-numerical range. This gen-
eralizes our previous work on unitary operations [6].

Consider a d-dimensional Hilbert space H d. The set of
linear operators on H d is denoted by BðH dÞ. A general
quantum state � on H d is given by a positive operator in
BðH dÞ with trace one. A pure state jc i is a unit vector in
H d. For ease of notations, we will use c to denote the
density operator form jc ihc j of jc i. Let � be with the
spectral decomposition � ¼ P

d
k¼1 pkjc kihc kj. The sup-

port of � is given by suppð�Þ ¼ spanfjc ki: pk > 0g. A
quantum operation E from BðH dÞ to BðH d0 Þ is a trace-

preserving completely positive map with the form Eð�Þ ¼
P

m
i¼1 Ei�E

y
i , where fEigi¼1���m are the Kraus operators of E

satisfying
P

iE
y
i Ei ¼ Id. Note that an isometry is a linear

operator U from H d to H d0 such that UyU ¼ Id.
�0 and �1 are said to be disjoint if suppð�0Þ \

suppð�1Þ ¼ f0g. The maximal fidelity quantitatively char-
acterizes the disjointedness between two quantum states
(actually two subspaces) and is defined as follows:

~Fð�0; �1Þ ¼ maxfjhc 0jc 1ij: jc ki 2 suppð�kÞ; k ¼ 0; 1g
Clearly, 0 � ~Fð�0; �1Þ � 1. ~F is vanishing iff �0 and �1

are orthogonal, and attains 1 iff �0 and �1 are not disjoint.
The most important property of the maximal fidelity is the
following operational interpretation, which is a key tool in
our later discussion. See [11] for a similar property of
ordinary fidelity.

Lemma 1.—For two pairs of quantum states f�0; �1g
and fjc 0i; jc 1ig, there is a quantum operation T such
T ð�kÞ ¼ c k for k ¼ 0, 1 iff ~Fð�0; �1Þ � ~Fðc 0; c 1Þ ¼
jhc 0jc 1ij. Thus we have ~Fð�0; �1Þ ¼
minfjhc 0jc 1ij: 9T ;T ð�kÞ ¼ c kg.

Proof.—The necessity can be easily proven by the re-
sults from Ref. [11]. Here we only focus on the sufficiency.
Assume that ~Fð�0; �1Þ � jhc 0jc 1ij. We will construct a
quantum operation T such that T ð�kÞ ¼ c k for k ¼ 0, 1.
We exclude the trivial cases and assume 0< ~Fð�0; �1Þ<
1. Let P and Q be the projectors onto suppð�0Þ and
suppð�1Þ, respectively. Applying the singular-valued de-
composition theorem to PQ, we have

PQ ¼ Xr

k¼1

�kjc ðkÞ
0 ihc ðkÞ

1 j;

where �k > 0 for 1�k� r. One can verify that

hc ðiÞ
0 jc ðjÞ

1 i ¼ �ij�i. So fjc ðkÞ
0 i; jc ðkÞ

1 igk¼1���r are mutually

orthogonal. Let Pk be the projector onto span fjc ðkÞ
0 i;

jc ðkÞ
1 ig for each k ¼ 1 � � � r. Let P0¼P�

P
r
k¼1 jc ðkÞ

0 ihc ðkÞ
0 j and Prþ1¼Q�P

r
k¼1 jc ðkÞ

1 ihc ðkÞ
1 j. One

can see that fP0; P1; � � � ; Pr; Prþ1g forms a complete pro-

jective measurement on suppðPþQÞ. We then apply this
measurement to f�0; �1g. If the outcome is 0 or rþ 1 then
the original state is �0 or �1, respectively, and we can
directly prepare the target as c 0 or c 1. Otherwise the

outcome is 1 � k � r and the left state should be jc ðkÞ
0 i

or jc ðkÞ
1 i, depending on the original state is �0 or �1,

respectively. Noticing that jhc ðkÞ
0 jc ðkÞ

1 ij� ~Fð�0;�1Þ�
jhc 0jc 1ij, we can further transform fjc ðkÞ

0 i; jc ðkÞ
1 ig into

fjc 0i; jc 1ig. j
It is straightforward to define that two quantum op-

erations E0 and E1 are (entanglement-assisted) disjoint

if there is an input state jc iRQ such that ðIR � EQ
0 Þðc RQÞ

and ðIR � EQ
1 Þðc RQÞ are disjoint, where R and Q de-

note auxiliary and principal systems, respectively, and IR

is the identity operation on R. The use of auxiliary sys-
tem is not always necessary for the disjointedness be-
tween some special quantum operations including unitary
operations, but is unavoidable for general quantum
operations.
There is an efficient procedure to determine whether E0

and E1 are disjoint. Suppose that Sk ¼ spanfEkigi¼1���nk ,
k ¼ 0, 1. If S0 \ S1 ¼ f0g then E0 and E1 are
entanglement-assisted disjoint and the input state can be

chosen as j�iRQ ¼ 1=
ffiffiffi
d

p P
d
k¼1 jkiRjkiQ. Otherwise, select

a basis fDigi¼1���p for S0 \ S1, and construct an operator

X ¼ Pp
k¼1 D

y
kDk. Let P1 be the projector onto suppðXÞ,

and consider two new quantum operations E0
0 and E0

1 with

respective Kraus operators fE0iP
?
1 g and fE1jP

?
1 g, where

P?
1 ¼ Id � P1. The original problem is now reduced to

decide whether E0
0 and E0

1 are disjoint. Repeating this

process n � d times we can efficiently construct a se-
quence of mutually orthogonal projectors P1; . . . ; Pn such
that Pn ¼ 0 and Pi � 0 for any i < n. Let P ¼
Id �P

n�1
i¼1 Pi. Then E0 and E1 are entanglement-assisted

disjoint iff P � 0. If satisfied, jc i ¼ ðI � PÞj�i is an
eligible input state.
We are now ready to present a complete characterization

of the perfect distinguishability of quantum operations.
Theorem 1.—Let E0 and E1 be two quantum operations

from BðH dÞ to BðH d0 Þ with Kraus operators fE0i: i ¼
1 � � � n0g and fE1j: j ¼ 1 � � � n1g, respectively. Then E0 and

E1 are perfectly distinguishable by a finite number of uses

iff (i) E0 and E1 are disjoint and (ii) Id =2 spanfEy
0iE1jg.

Proof.—The necessity of (i) and (ii) will be evident from
the remarks after Theorem 2. The sufficiency follows from
the following protocol to distinguish between E0 and E1 (R
is an auxiliary system with dimension d):
Step 1. Calculate jc 0iRQ and jc 1iRQ such that

hc 0jc 1i � 0 and ðI � E0Þðc 0Þ ? ðI � E1Þðc 1Þ. This
can be done due to condition (ii). More precisely, let

jc 0i ¼ j�iRQ and jc 1i ¼ ðI �MÞj�iRQ, where M 2
span?fEy

0iE1jg and trðMyMÞ ¼ d.

Step 2. Choose j�iRQ such that �0 ¼ ðI � E0Þð�Þ and
�1 ¼ ðI � E1Þð�Þ are disjoint. This can be done due to
condition (i).
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Prepare N copies of j�iRQ and apply the unknown
device N times to Q in parallel. Then we are left with a
state from f��N

0 ; ��N
1 g. Choose N such that ~Fð��N

0 ; ��N
1 Þ ¼

~Fð�0; �1ÞN � jhc 0jc 1ij. We can choose N ¼
dlnjhc 0jc 1ij= ln ~Fð�0; �1Þe.

Step 3. Transform (��N
0 , ��N

1 ) into (jc 0i, jc 1i) by some

quantum operationT , which can be done due to our choice
of N and Lemma 1. Then applying the unknown device to
(jc 0i, jc 1i) will yield two orthogonal states, which allows
us to perfectly identify the unknown device with N þ 1
queries. j

A potential application of Theorem 1 is to design a
classical data hiding protocol using devices instead of
states [10]: A boss, say Charlie, encodes a secret bit b
into two pairs of quantum operations (devices)
ðEb; E0

bÞb¼0;1, and allocates Eb and E0
b to Alice and Bob,

respectively. Alice and Bob cannot individually infer b
with certainty. However, they can reveal the bit if they
perform joint quantum operations or receive shared entan-
glement from Charlie. Theorem 1 allows us to construct
these kind of instances by imposing that fE0; E1g satisfies
only condition (i) while fE0

0; E
0
1g satisfies only condition

(ii). For example, E0 and E1 are quantum operations that

prepare quantum states jc 0i ¼ ðj0i þ ffiffiffi
2

p j1iÞ= ffiffiffi
3

p
and

jc 1i ¼ ðj0i � ffiffiffi
2

p j1iÞ= ffiffiffi
3

p
, respectively, while E0

0 ¼
ðj0ih0j þ 1=

ffiffiffi
2

p j1ih1j; 1= ffiffiffi
2

p j1ih1j; 0Þ and E0
1 ¼ ðj0i�

h0j þ 1=
ffiffiffi
2

p j1ih1j; 0; 1= ffiffiffi
2

p j1ih1jÞ are two one-qubit mea-
surements. One can easily verify that E0

0 and E0
1 are per-

fectly distinguishable upon the respective input states jc 0i
and jc 1i as trððj0ih0j þ 1=2j1ih1jÞjc 0ihc 1jÞ ¼ 0. The new
feature of hiding classical data using quantum devices is
that the identified device can be reused in the future
information processing tasks.

The protocol we presented in Theorem 1 is not optimal
in general. To describe an optimal one, we need the notion
of q-maximal fidelity, which is naturally induced from the
maximal fidelity between quantum states, to quantitatively
describe the disjointedness between quantum operations.
For quantum operations E0 and E1, and 0 � q � 1, the
(unassisted) q-maximal fidelity is defined as follows:

~F qðE0; E1Þ ¼ minf ~FðE0ðc 0Þ; E1ðc 1ÞÞ: hc 0jc 1i ¼ qg:

The entanglement-assisted q-maximal fidelity is defined as
follows:

~F ea
q ðE0; E1Þ ¼ ~FqðIR � EQ

0 ; I
R � EQ

1 Þ;

where R is an auxiliary system with the same dimension as
Q (larger cannot make difference). When q ¼ 1,
~F1ðE0; E1Þ and ~Fea

1 ðE0; E1Þ are said to be the maximal
fidelity and the entanglement-assisted maximal fidelity
between E0 and E1, respectively.

~Fea
q ðE0; E1Þ plays a crucial role in designing the optimal

perfect discrimination protocol mainly due to the following
desirable property:

~F ea
q ðE0; E1Þ � q

q0
~Fea
q0 ðE0; E1Þ; 0 � q < q0 � 1: (1)

This property can be understood as ‘‘more distinguishable
input states will yield more distinguishable output states.’’
It is true due to the fact that by appending an auxiliary qubit

we can divide the input states for ~FðeaÞ
q into two parts: a pair

of qubit states with inner product q=q0 and a pair of optimal
input states for ~Fea

q0 .

Let Nmin be the minimal number of uses of the unknown
quantum operation required to perfectly distinguish be-
tween E0 and E1, and let fqkg be a sequence of
q-maximal fidelities recursively defined as follows:

q0 ¼ 1; qk ¼ ~Fea
qk�1

ðE0; E1Þ; k � 1:

Notice that q1 ¼ ~FðeaÞ
1 ðE0; E1Þ is just the maximal fidelity

between E0 and E1. Let us further introduce qmax by qmax ¼
maxfq: ~FðeaÞ

q ðE0; E1Þ ¼ 0g. Then the following theorem
shows that Nmin is completely determined by the sequence
of fqkg and qmax (indirectly).

Theorem 2.—Let N ðkÞ be an arbitrary quantum dis-
crimination network containing k uses of the unknown
quantum operation from fE0; E1g. Then

qk � ~Fea
1 ðN ðkÞðE0Þ;N ðkÞðE1ÞÞ:

Hence E0 and E1 are perfectly distinguishable iff qk ¼ 0
for some k � 1. If so, Nmin ¼ minfk: qk ¼ 0; k � 1g ¼
minfk: qk�1 � qmaxg, and qk ¼ 0 for any k > Nmin.
Proof.—By definition q1 is the optimal maximal fidelity

one can achieve by a single use. Assume that qk is optimal
by k uses of the unknown device. Consider now any

quantum discrimination protocol N ðkþ1Þ containing kþ
1 uses of the unknown device. By the induction assump-

tion, we have q0k ¼ ~Fð�ðkÞ
0 ; �ðkÞ

1 Þ � qk, where �
ðkÞ
0 and �ðkÞ

1

are the output states of N ðkþ1Þ except the last use of the

unknown device. Clearly, �ðkÞ
0 and �ðkÞ

1 are the output states

of a quantum discrimination network containing k uses of
the unknown device, and also the input states for the last

query in N ðkþ1Þ. Let �ðkþ1Þ
0 and �ðkþ1Þ

1 be the final output

states of N ðkþ1Þ. By Eq. (1), we have

~Fð�ðkþ1Þ
0 ; �ðkþ1Þ

1 Þ � ~Fea
q0
k
ðE0; E1Þ � q0k

qk
~Fea
qk ðE0; E1Þ � qkþ1;

where we have employed the assumption q0k � qk and the

definition of qkþ1. The expression of Nmin follows imme-
diately. j
It is clear from the above proof that E0 and E1 are

perfectly distinguishable iff q1 < 1 and qmax > 0, which
is based on the following two simple observations: (1)
q1 ¼ 1 implies qk ¼ 1 for any k � 1; or (2) qmax ¼ 0
implies qk > 0 for any k � 1. One can readily verify that
q1 < 1 and qmax > 0 correspond to conditions (i) and (ii) in
Theorem 1, respectively.
The sequence of fqkg and qmax can be calculated with

arbitrary high precision using numerical iteration tech-

PRL 103, 210501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 NOVEMBER 2009

210501-3



niques as it is evident that FðeaÞ
q ðE0; E1Þ can be formulated

into an optimization problem on a compact set. Hence we
can estimate Nmin for any two quantum operations E0 and
E1 according to the above theorem.

If both E0 and E1 are isometries, the calculation of fqkg
and qmax becomes quite tractable. For isometries U0 and
U1, we have

~F qðU0; U1Þ ¼ ~rqðAÞ ¼ minfjzj: z 2 WqðAÞg;

where A ¼ Uy
0U1 [12] and WqðAÞ ¼

fhc 0jAjc 1i: hc 0jc 1i ¼ qg. Similarly, ~Fea
q ðU0; U1Þ ¼

~rqðId � AÞ. For 0 � q � 1, WqðAÞ is said to be the

q-numerical range of A with ~rqðAÞ the inner radius [13–

15]. A somewhat surprising fact is that the optimal perfect
discrimination of isometries can be achieved without aux-
iliary systems or entanglement. That is, for any isometries
U0 and U1 and 0 � q � 1,

~F ea
q ðU0; U1Þ ¼ ~FqðU0; U1Þ:

Previously we have shown the same result for unitary
operations [6]. The above result follows from an interesting
property about the q-numerical range, say WqðId � AÞ ¼
WqðAÞ for any linear operator A and 0 � q � 1. A detailed

proof of property is provided in [16].
No explicit form of ~rðAÞ is known in general. Hence it

seems impossible to obtain the analytical formula of
NminðU0; U1Þ except some special cases such as A is nor-
mal. Fortunately,WqðAÞ is a convex compact set [14]. As a

result, it is quite feasible to compute ~rqðAÞ, and hence to

determine the exact value of Nmin. In particular, the case
that A is unitary has been completely solved [6]. For the
case that A is positive definite, any parallel protocol cannot
distinguish betweenU0 andU1. In sharp contrast, we know
from the above discussions that there is a sequential pro-
tocol that can achieve an optimal perfect discrimina-
tion [17].

It would be highly desirable to identify the quantum
Chernoff bound for quantum operations that are not per-
fectly distinguishable. Many of our techniques can be
generalized to multipartite setting, where distant parties
share an unknown quantum operation and they are only
allowed to perform arbitrary local operations and commu-
nicate with each other classically (LOCC). Previously we
have shown that the perfect distinguishability of unitary
operations is preserved under LOCC [18], benefiting from
the local distinguishability of two orthogonal multipartite
pure states [19]. However, the condition for the perfect
distinguishability of general multipartite quantum opera-
tions by LOCC remains open.
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