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We present a novel method to compute expectation values in the Lieb-Liniger model both at zero and

finite temperature. These quantities, relevant in the physics of one-dimensional ultracold Bose gases, are

expressed by a series that has a remarkable behavior of convergence. Among other results, we show the

computation of the three-body expectation value at finite temperature, a quantity that rules the recom-

bination rate of the Bose gas.
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Correlation functions are key quantities in quantum
interacting systems; not only do they fully encode the
dynamics but they are also directly related to various
susceptibilities and response functions. For these reasons,
there has always been an intense search to find the most
efficient ways to compute them. The task is notoriously
difficult, even if the system is integrable. A typical but
significant example is provided by the Lieb-Liniger (LL)
model [1] that describes the low-temperature properties of
one-dimensional interacting Bose gases; although it can be
solved through Bethe ansatz equations, the explicit com-
putation of its correlation functions is a long-standing
problem [2,3]. The interest in the computation of correla-
tion functions in the LL model is obviously not only
theoretical. In a series of recent experimental achievements
strongly interacting ultracold bosons have been confined
within waveguides by nearly one-dimensional potentials
that tightly trap the particle motion in the two transverse
directions while leaving it free in the third axial direction
[4–6]; the coupling of these bosons with the external world
can be made so weak that their behavior is very well
described by the LL model. Through interference (or even-
tually in situ) experiments, several quantities can be de-
tected both at zero and finite temperature: the time duration
of experiments depends on the three-body recombination
rate, which is proportional to local three-body expectation
values [7]. Many important general questions of quantum
many-body physics can be studied in such a highly control-
lable setup: dynamical properties concerning the absence
(or not) of thermalization [4,8], for instance, or the behav-
ior of integrable quantum systems when small nonintegr-
able perturbations (e.g., three-body interactions and/or a
weak external trapping potential) are switched on [9].

Over the years several theoretical quantities of the LL
model have been computed by means of different tech-
niques [10–19]. In this Letter we present a compact and
general way to determine the expectation values of its local
operators. The method takes advantage of an exact map-
ping between a relativistic integrable massive model—the
sinh–Gordon (ShG)—and the LL model: in a proper non-
relativistic limit of the ShG model, both its S-matrix and

Lagrangian coincide with those of the LL model. Since the
S matrix of an integrable relativistic model fixes the exact
matrix elements of all operators of the theory (and for the
ShG model these matrix elements are all known [20,21]),
the correspondence between the two models opens the way
to computing the corresponding quantities of the LL model
in a very direct way. As shown below, this method provides
a remarkable simplification of the problem. Its implemen-
tation actually requires us to take into account an addi-
tional aspect of the problem: while in the ShG model the
correlation functions refer to the vacuum (i.e., the state
without any particles), in the LL model they relate instead
to its ground state at a finite density. This aspect, however,
can be successfully overcome by the thermodynamical
Bethe ansatz (TBA) formalism developed in [22], which
has the additional convenience of being applicable equally
well both at zero and finite temperature. In this way we are
able to compute not only the zero temperature expectation
values but also their finite temperature expressions.
The LL-ShG mapping.—The LL Hamiltonian for N in-

teracting bosons of mass m in one dimension is
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The corresponding nonrelativistic field theory description
is the quantum nonlinear Schrödinger model [2], which
employs the complex field c and the Lagrangian
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The effective coupling constant of the LL model is given
by the dimensionless parameter � ¼ 2m�=@2n, where � >
0 is the coupling entering the Hamiltonian (1) while n ¼
N=L is the density of the gas (L is the length of the system).
Temperatures are usually expressed in units of the tem-
perature TD ¼ @

2n2=2mkB of the quantum degeneracy,
� ¼ T=TD. The two-body elastic Smatrix of the LL model
is [1,10]
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SLLðp; �Þ ¼ p� i2m�=@

pþ i2m�=@
; (3)

where p is the momentum difference of the two particles.
Consider now the ShG model in 1þ 1 dimensions, i.e.,

the integrable and relativistic invariant field theory defined
by the Lagrangian

L ShG ¼ 1

2
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@�

c@t

�
2 � ðr�Þ2

�
��2

g2
coshðg�Þ; (4)

where � ¼ �ðx; tÞ is a real scalar field, � is a mass
scale and c is the speed of light. The parameter� is related
to the physical (renormalized) mass m by �2 ¼
��m2c2=@2 sinð��Þ, where � ¼ @cg2=ð8�þ @cg2Þ [20].
The energy E and the momentum P of a particle can be
written as E ¼ mc2 cosh	, P ¼ mc sinh	, where 	 is the
rapidity. Since the ShG dynamics is ruled by an infinite
number of conservation laws, all its scattering processes
are purely elastic and can be factorized in terms of the two-
body S matrices [20]

SShGð	;�Þ ¼ sinh	� i sinð��Þ
sinh	þ i sinð��Þ ; (5)

where 	 is the rapidity difference of the two particles. It is
now easy to see that taking simultaneously the nonrelativ-
istic and weak-coupling limits of the ShG model such that

g! 0; c! 1; gc ¼ 4
ffiffiffiffi
�
p

=@ ¼ fixed; (6)

its Smatrix (5) becomes identical to the Smatrix (3) of the
LL model. Notice that the coupling � does not need to be
small; i.e., with this mapping we can study the LL model at
arbitrarily large values of the dimensionless coupling �.

The mapping between the two models goes beyond the
identity of their S matrix: it actually extends both to their
Lagrangians and TBA equations. Details will be given
elsewhere, but it is simple to follow the main steps of the
procedure. According to [23], the nonrelativistic limit of a
field theory consists of expressing the real scalar field in the
form

�ðx; tÞ ¼
ffiffiffiffiffiffiffi
@
2

2m

s
½c ðx; tÞe�iðmc2=@Þt þ c yðx; tÞeþiðmc2=@Þt�;

and, when the limit c! 1 of the Lagrangian is taken, of
omitting all its oscillating terms. The commutation rela-
tion ½�ðx; tÞ;�ðx0; tÞ� ¼ i@�ðx� x0Þ implies for the non-
relativistic operators ½c ðx; tÞ; c yðx0; tÞ� ¼ �ðx� x0Þ.
Furthermore, when the limit g! 0 of Eq. (6) is consid-
ered, the c yc terms coming from the potential and kinetic
parts cancel each other, while all higher terms of the series
expansion of the potential, but the quartic one, vanish.
Hence, the ShG Lagrangian (4) reduces to the nonlinear
Schrödinger Lagrangian (2). Notice that the mapping
based on the limit (6) applies to any operator of the theory.

In the same way, one can also show that the TBA
equations of the ShG model (given for instance in [24])

reduce to the ones of the LL model, written down in [10].
In the LL model at a finite T the TBA equation for the
pseudoenergy 
ðT;�Þ consists of the nonlinear integral
equation


ðT;�Þ ¼ p2=2m��

kBT
� ’ � logð1þ e�
Þ; (7)

where � is the chemical potential associated to the finite
density n of the gas, ’ðpÞ ¼ �i @

@p logSLLðpÞ is the de-

rivative of the phase shift and ’ � f � R1
�1

dp0
2� ’ðp�

p0Þfðp0Þ. The solution of this integral equation leads to
the free energy and to all other thermodynamical data of
the model.
Expectation values.—At equilibrium the expectation

value of an operator O ¼ OðxÞ at temperature T and at
finite density is given by

hOi ¼ Trðe�ðH��NÞ=ðkBTÞOÞ
Trðe�ðH��NÞ=ðkBTÞÞ : (8)

In a relativistic integrable model the above quantity can be
neatly expressed as [22]

hOi ¼ X1
n¼0

1
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Z 1
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d	i
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fð	iÞ
�
h	 jOð0Þj	!iconn; (9)

where fð	iÞ ¼ 1=ð1þ e
ð	iÞÞ and 	
! � 	1; . . . ; 	n (	

 �
	n; . . . ; 	1) denote the asymptotic states entering the traces
in (8). This formula employs both the pseudoenergy 
ð	Þ
and the connected diagonal form factor of the operator O,

defined as h	 jOj	!iconn¼FPðlim�i!0h0jOj	
!
; 	
 � i�þ i�

 iÞ
where �

 � �n; . . . ; �1 and FP in front of the expression
means taking its finite part, i.e., omitting all the terms of
the form �i=�j and 1=�p

i where p is a positive integer.

In order to compute the expectation values of the LL
model by applying Eq. (9) we need: (a) to solve the integral
equation (7) for 
ð	Þ; (b) to identify the relevant form
factors of the ShG model; (c) to take the nonrelativistic
limit of both the form factors and Eq. (9). Taking for
granted the straightforward (numerical) solution of
Eq. (7), let us focus our attention on the last two points.
The generic m-particle form factor of a local operatorO in
the ShG model can be written as [20,21]

FO
m ð	1; . . . ; 	mÞ ¼ QO

mðx1; . . . ; xmÞ
Y
i<j

Fminð	ijÞ
xi þ xj

; (10)

where xi ¼ e	i and QO
m are the symmetric polynomials in

the x’s that fully characterize the operator O. The explicit
expression of Fminð	Þ is given in [20]. We are interested in

the symmetric polynomials QðqÞm of the exponentials Oq ¼
eqg� since, using their Taylor expansion, we can extract the
form factors of all normal ordered operators : �k : . Their
expression is [21]

QðqÞm ¼ ½q�
�
4 sinð��Þ

N

�
m=2

detMmðqÞ; (11)
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where MmðqÞ is an ðm� 1Þðm� 1Þ matrix with elements

½MmðqÞ�i;j ¼ �ðmÞ2i�j½i� jþ q�. Above, ½x� � sinðx��Þ=
sinð��Þ while �ðmÞa (a ¼ 0; 1; . . . ; m) are the elementary
symmetric polynomials in m variables.

On the basis of the results given above, we are now in the
position to compute the local k-particle correlation func-
tion gk of the LL model defined by

hc ykc ki ¼ nkgkð�; �Þ; (12)

where k is an integer (k ¼ 1; 2; 3; . . . ). The gk’s are func-
tions of the dimensionless LL coupling � and of the
reduced temperature �. The relation between gk in the
LL model and the corresponding quantity in the ShG
model in the limit (6) is given by

h:�2k:i !
�
@
2

2m

�
k 2k

k

� �
hc ykc ki:

Using Eq. (9) and the connected form factors of the corre-
sponding operator we arrive at the expression

hc ykc ki¼ 2k

k

 !�1�
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(13)
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are the double limit (6) of the connected form factors. As
shown below, the series (13) are nicely saturated by the first
few terms for sufficiently large values of � (� ¼ 0 is a
singular point of the model [1], therefore one cannot expect
a priori any fast convergence nearby). A first check of
Eq. (13) is provided by the case k ¼ 1: using (13) (with a
chemical potential � that ensures the finite density n) and
summing up the series, one easily checks that hc yc i ¼ n
and g1 ¼ 1, as it should be for translational invariance. As
shown in Fig. 1, the exact value g1 ¼ 1 (solid line) is
rapidly approached by just the first terms of (13): the
convergence of the series is always remarkably fast for
all � � 1:5, where the exact value is obtained within a 5%
accuracy just using its first four terms. As a second check
of (13), let us show how we can easily recover the leading
order of the strong coupling (i.e., large �) expansion of all
gk: since this always comes from the first nonzero integral
in the series (13), we get

gk ¼ k!

2k

�
�

�

�
kðk�1Þ

Ik þ . . . ; (14)

where Ik ¼
R
1
�1 dk1 . . .

R
1
�1 dkk

Q
k
i<jðki � kjÞ2. This result

coincides with the one obtained in [14].
The quantity g2 can be exactly determined via the

Hellmann-Feynman theorem [15] and its plot at T ¼ 0 is
shown in Fig. 1 together with our determination from

Eq. (13). As before, also in this case there is a fast con-
vergent behavior of the series. The strong coupling regime
of g2 can be computed by expanding in powers of ��1 all
the terms in Eq. (13) and for T ¼ 0 we get

g2 ¼ 4

3

�2

�2

�
1� 6

�
þ
�
24� 8

5
�2

�
1

�2

�
þOð��5Þ; (15)

in agreement with the result of the Hellmann-Feynman
theorem [14,15]. Expression (15) is also plotted in Fig. 1
in order to show that the determination of g2 (at finite �)
obtained from the first terms of Eq. (13) is closer to the
exact result, because any of one them contains infinitely
many powers of �. At finite temperatures the convergence
of the series is also pretty good and the results are shown in
Fig. 2.
As a final example, let us discuss g3, a quantity known

exactly at T ¼ 0 [19], but only approximately at T > 0
[14]. From (13) its strong coupling limit at T ¼ 0 is

g3 ¼ 16

15

�6

�6

�
1� 16

�

�
þOð��8Þ; (16)

where we report both the leading and subleading terms in
��1 of this expression. The plot of g3 at � ¼ 0 using form
factors up to n ¼ 6 and 8 particles [i.e., one or two terms of
the series (13)] is in Fig. 3(a) and, as in previous examples,
it shows a nice convergent pattern to the exact value found
in [19]. Figures 3(b) and 3(c) show g3 as a function of � at
fixed temperature �, while Fig. 3(d) shows instead g3 as a
function of � at a fixed value of �.
Conclusion.—We have shown that the equilibrium ex-

pectation values for one-dimensional interacting Bose
gases can be efficiently computed by using the nonrelativ-
istic limit of an integrable relativistic field theory, the sinh-
Gordon model. There is a significant advantage in using
this method instead of employing directly the nonrelativ-
istic Lagrangian (2). The reason is that a relativistic field

0 5 10 15
γ
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0.2

0.4

0.6

0.8

1
g1

g2

FIG. 1 (color online). g1 and g2 at T ¼ 0 using form factors up
to n ¼ 4, 6 and 8 particles with green dot-dashed, blue dashed
and red dotted lines, respectively . The exact values are given by
the solid lines whereas the dot-dashed line below, indicated by
the arrow, corresponds to the strong coupling expansion (15).
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theory presents a larger number of constraints (crossing
invariance, for instance) which permit us to pin down
exactly and efficiently the matrix elements of all operators:
once these quantities are known, it is then easy to take their
nonrelativistic limit. As shown above, this proves to be a
notable simplification in the computation of the correlators
of the LL model.

The method works equally well at T ¼ 0 and T � 0
where the series expansion presents a remarkable conver-
gence behavior for finite values of �. There is no obstruc-
tion, in principle, to compute higher form factors and
further improve the result. Strong coupling expansions in
��1 can be easily derived as well but at finite � the form
factor expansion, containing infinitely many powers of �,
is more accurate for the determination of gk, as we showed
comparing it with exact results. As a significant application
of the method, we have determined g3 at finite temperature

(a term which is proportional to the recombination rate of
the gas). This quantity, as well as the higher gk, may
provide important information once the integrability of
the model is broken. In the future it would be also interest-
ing to apply this method both to two-point correlation
functions and to other models.
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discussions. This work is supported by the Grants
INSTANS (from ESF) and No. 2007JHLPEZ (from
MIUR).

[1] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[2] V. E. Korepin, N.M. Bogoliubov, and A.G. Izergin,

Quantum Inverse Scattering Method and Correlation
Functions (University Press, Cambridge, 1993).

[3] For a recent review and more references, see V.A.
Yurovsky, M. Olshanii, and D. S. Weiss, Adv. At. Mol.
Opt. Phys. 55, 61 (2008).

[4] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305,
1125 (2004).

[5] B. Paredes et al., Nature (London) 429, 277 (2004).
[6] A. H. van Amerongen et al., Phys. Rev. Lett. 100, 090402

(2008).
[7] Y. Kagan, B.V. Svistunov, and G.V. Shlyapnikov, JETP

Lett. 42, 209 (1985).
[8] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)

452, 854 (2008).
[9] G. Delfino, G. Mussardo, and P. Simonetti, Nucl. Phys. B

473, 469 (1996).
[10] C. N. Yang and C. P. Yang, J. Math. Phys. (N.Y.) 10, 1115

(1969).
[11] F. D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).
[12] N. A. Slavnov, Theor. Math. Phys. 79, 502 (1989); J. S.

Caux, P. Calabrese, and N.A. Slavnov, J. Stat. Mech.
(2007) P01008.

[13] G. E. Astrakharchik and S. Giorgini, Phys. Rev. A 68,
031602(R) (2003).

[14] D.M. Gangardt and G.V. Shlyapnikov, Phys. Rev. Lett.
90, 010401 (2003); New J. Phys. 5, 79 (2003).

[15] K. V. Kheruntsyan, D.M. Gangardt, P. D. Drummond, and
G.V. Shlyapnikov, Phys. Rev. Lett. 91, 040403 (2003).

[16] M.A. Cazalilla, J. Phys. B 37, S1 (2004).
[17] Y. Castin, J. Phys. IV 116, 89 (2004).
[18] P. D. Drummond, P. Deuar, and K.V. Kheruntsyan, Phys.

Rev. Lett. 92, 040405 (2004); P. Deuar et al., Phys. Rev. A
79, 043619 (2009).

[19] V. V. Cheianov, H. Smith, and M. B. Zvoranev, Phys.
Rev. A 73, 051604(R) (2006).

[20] A. Fring, G. Mussardo, and P. Simonetti, Nucl. Phys. B
393, 413 (1993).

[21] A. Koubek and G. Mussardo, Phys. Lett. B 311, 193
(1993).

[22] A. LeClair and G. Mussardo, Nucl. Phys. B 552, 624
(1999).

[23] M.A. B. Beg and R. C. Furlong, Phys. Rev. D 31, 1370
(1985).

[24] T. R. Klassen and E. Melzer, Nucl. Phys. B 350, 635
(1991).

0 5 10
γ

0

0.2

g 3

0 5 10
γ

0

0.04

g 3

0 5 10
γ

0

0.5

g 3

0 5 10
τ

0

0.04

g 3

(b))a(

(d))c(

τ=0 τ=1

τ=10 γ=7

FIG. 3 (color online). g3 vs � at: (a) � ¼ 0, (b) � ¼ 1 and
(c) � ¼ 10. In (d) we plot g3 vs � at � ¼ 7. In all figures the blue
dashed and the red dotted lines refer to n ¼ 6 and 8 particles,
respectively. The solid line in (a) is the exact value of g3 at
� ¼ 0.
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FIG. 2 (color online). g2 at � ¼ 1, 10 using form factors up to
n ¼ 4, 6 and 8 particles with green dot-dashed, blue dashed and
red dotted lines, respectively. The solid lines show the exact
result.
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