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At low temperature, a quasi-one-dimensional ensemble of atoms with an attractive interaction forms a

bright soliton. When exposed to a weak and smooth external potential, the shape of the soliton is hardly

modified, but its center-of-mass motion is affected. We show that in a spatially correlated disordered

potential, the quantum motion of a bright soliton displays Anderson localization. The localization length

can be much larger than the soliton size and could be observed experimentally.
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At zero temperature, cold atoms interacting attractively
in a one-dimensional (1D) system tend to cluster together,
forming a bright soliton. Explicit solutions of the many-
body problem can be found in some cases, for example, for
contact interactions [1]. Using external potentials, it has
been experimentally shown how to put solitons in motion
[2]. What happens to a soliton exposed to a disordered
potential? If the potential is strong, it will destroy the
soliton. If it is sufficiently weak and smooth not to perturb
the soliton shape, one expects the soliton to undergo mul-
tiple scattering, diffusive motion, and possibly Anderson
localization [3]. Indeed, propagation of waves in a disor-
dered potential is profoundly affected by Anderson local-
ization. Multiple scattering on random defects yields
exponentially localized density profiles and a suppression
of the usual diffusive transport associated with incoherent
wave scattering [4]. In 1D Anderson localization is a
ubiquitous phenomenon [5], which has been recently ob-
served for cold atomic matter waves [6]. It is important to
understand how it is modified when interactions between
particles are taken into account.

We consider a Bose-Einstein condensate in a quasi-1D
geometry. Within mean-field theory, it is described by the
Gross-Pitaevskii energy functional

E ¼
Z

dz

�
1

2
j@z�j2 þ g

2
j�j4 ��j�j2

�
(1)

in units of E0 ¼ 4m!2
?a

2, l0 ¼ @=2jajm!?, and t0 ¼
@=4a2m!2

? for energy, length, and time, respectively.

Here, !? denotes the transverse harmonic confinement
frequency, a the atomic s-wave scattering length, and �
the chemical potential. The cases of repulsive and attrac-
tive atomic interaction are covered by g ¼ �1.

The dynamics is extremely different in both cases, so
that we first discuss the case of attractive interaction, g ¼
�1. The ground state of (1) is the bright soliton [7]

�0ðz� qÞ ¼
ffiffiffiffiffiffi
N

2�

s
e�i�

cosh½ðz� qÞ=�� ; (2)

normalized to the total number of particles N. The chemi-
cal potential is � ¼ �N2=8 and the soliton width is � ¼
2=N. This ground-state solution has an arbitrary center-of-
mass (c.m.) position q and an arbitrary global phase � that
spontaneously break the translational and the Uð1Þ gauge
symmetry of the energy functional (1), respectively. These
degrees of freedom appear as zero-energy modes of
Bogoliubov theory, and their quantum dynamics requires
special attention [8,9].
The energy functional (1) is no longer translation invari-

ant when a potential term
R
dzVðzÞj�j2 is added. If VðzÞ is

sufficiently weak and smooth, the soliton shape remains
unchanged to lowest order in V, and only its c.m. position q
is affected. In this Letter, we show that the quantum
dynamics of q in a disorder potential leads to Anderson
localization of the soliton, over a localization length pos-
sibly longer than the soliton size.
An intuitive picture emerges using a simple ansatz in

terms of collective coordinates (cf. [10] in the context of

Bloch oscillations). Inserting �ðz;q; PqÞ ¼ eiPqz=N�0ðz�
qÞ into (1) leads to an effective quantum Hamiltonian

Ĥ q ¼ P̂2
q

2N
þ
Z

dzVðzÞj�0ðz� q̂Þj2: (3)

It describes the entire soliton as an object of mass N
evolving in an effective potential

R
dzVðzÞj�0ðq̂� zÞj2

that is the convolution of the bare potential with the soliton
density.
This simple ansatz yields no information on the remain-

ing degrees of freedom. Therefore, we apply a more com-
plete analysis, expanding the energy functional (1) to
second order in deviations from the ground-state solution
(2), as in, e.g., [8]. Diagonalization of the quadratic
Hamiltonian results in the eigenvalue problem for the
non-Hermitian operator

L ¼ �1
2@
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Its right eigenvectors (un, vn) and corresponding adjoint
modes (uadn , v

ad
n ) build a basis that spans the functional

space of (�, ��). For all nonzero eigenvalues En, the
adjoint modes are left eigenvectors of L. This is no longer
true for the zero-energy modes. The first zero mode
ðu�; v�Þ ¼ i@�ð�0; �

�
0Þ, is related to the global Uð1Þ gauge

invariance �e�i� ! �e�ið�þ�Þ broken by the classical so-
lution (2) and its adjoint mode is well known, ðuad� ; vad

� Þ ¼
@Nð�0; �

�
0Þ [8,9]. The other zero mode, ðuq; vqÞ ¼

i@qð�0; �
�
0Þ, originates from the translational invariance

q ! qþ � also broken by the soliton solution. To find
the adjoint mode, one solves Lðuadq ; vad

q Þ ¼ M�1ðuq; vqÞ,
where M is determined by the requirement huadq juqi �
hvad

q jvqi ¼ 1. This ensures that (uadq , vad
q ) is orthogonal to

all eigenvectors ofL with En � 0 [8,9]. It is easy to verify
that

uadq
vad
q

 !
¼ i

z� q

N

�0

���
0

� �
; (5)

and M ¼ N, the mass of the system.
Following Dziarmaga [9] we may now perform an ex-

pansion around the ground state,

� ¼ �0 þ P�u
ad
� þ Pqu

ad
q þ X

n;En>0

ðbnun þ b�nv�
nÞ; (6)

where all modes are implicit functions of � and q. Inserting
(6) in the energy functional (1) and expanding to second
order in P�, Pq, and bn (requiring Pq� � N for the c.m.

momentum) results in the Bogoliubov Hamiltonian, whose
quantum version reads

Ĥ 0 ¼ �N

8
P̂2
� þ

P̂2
q

2N
þ X

n;En>0

Enb̂
y
n b̂n; (7)

where P̂� ¼ N̂ � N ¼ �i@� and P̂q ¼ �i@q.

Because � can take nonperturbatively large values, we

can work in a subspace of Hilbert space with definite N̂ ¼
N. The minus sign in front of P2

� in (7) arises because the

bright soliton (2) is a saddle point of the energy functional
(1). It has no consequences since the number of particles is
fixed.

When the energy functional is supplemented with a
potential term

R
dzVðzÞj�j2, this perturbation commutes

with N̂, so that we can focus on its incidence on the second
and third term in (7), i.e., the c.m. motion and Bogoliubov
excitations. A smooth external potential can only slightly
distort the soliton. If the potential energy variation across
the soliton is of the order of the standard deviation jV0j of
the disordered potential, then jV0j � j�j ¼ N2=8 is a
sufficient condition for the soliton shape to be only weakly
modified by the external potential [11]. Moreover, the large
energy gap j�j above the ground state [12] makes
Bogoliubov excitations by the potential negligible. The
soliton shape thus follows adiabatically and reversibly,
i.e., without heating, the variations of the external poten-

tial. Then, the only degree of freedom affected by the
external potential is the soliton position q. Inserting the
expansion (6) into the energy functional, expanding up to
quadratic terms, and quantizing, we arrive at the effective
Hamiltonian (3) to leading order in 1=N and V.
In the following, we study the case of N ¼ 100 Li7

atoms with scattering length a ¼ �3 nm in a transverse
harmonic trap with !? ¼ 2�� 5 kHz. Then, units for
energy, length, and time are E0 ¼ 1:28� 10�4

@!?, l0 ¼
47:8 �m and t0 ¼ 0:25 s. A soliton (2) of size � ¼ 2=N ¼
0:02 ( � 1 �m) is initially prepared in a large axial har-
monic trap with !z ¼ 100 (2�� 64 Hz). The trapping
potential is sufficiently small not to distort the soliton,
whose c.m. occupies the ground state of a harmonic oscil-
lator with frequency !z. When the trap is turned off, the
soliton position starts its quantum dynamics with the cor-
responding momentum distribution

�0ðkÞ ¼ 1ffiffiffiffi
�

p
�k

exp½�k2=�k2�; �k2 ¼ N!z; (8)

and begins to explore the disordered potential.
In 1D random potentials, Anderson localization is ge-

neric: the amplitude of every plane wave with wave vector
k decreases asymptotically as expf��ðkÞjqj=2g. The in-
verse localization length �ðkÞ can be calculated analyti-
cally in the weak-disorder limit (see below) [13].
Equivalently, the energy spectrum is discrete and dense
(in the limit of infinitely large systems) with exponentially
localized eigenstates.
Disorder potentials are completely characterized by cor-

relation functions Vðz1Þ . . .VðznÞ where the overbar de-
notes an ensemble average over disorder realizations.
The average potential value shifts the origin of energy

and can always be set to zero, VðzÞ ¼ 0. The pair correlator

can be written as Vðz0ÞVðz0 þ zÞ ¼ V2
0Cðz=�0Þ, where V0

measures the potential strength, and �0 the spatial corre-
lation length. Higher-order correlations are required to
fully describe non-Gaussian disorder such as the optical
speckle potential considered in the following.
Optical speckle yields a light-shift potential VðzÞ /

	jEðzÞj2 proportional to the intensity of the light field
EðzÞ and to the atomic polarizability 	, whose sign de-
pends on the detuning of the external light frequency from
the atomic resonance. At fixed detuning, the potential
features either random peaks (the ‘‘blue-detuned’’ case)
or wells (‘‘red-detuned’’). The potential distribution is
asymmetric, and the importance of odd moments can be
probed by comparing the blue- and red-detuned cases for
fixed jV0j. We use jV0j ¼ 8� 10�5j�j ¼ 0:1 in the fol-
lowing. A 1D speckle potential has the pair correlation
function CðyÞ ¼ ½sinðyÞ=y�2, with a correlation length that
can be as short as 0:26 �m [6] or�0 ¼ 0:0056 in our units.
In k-space, the corresponding power spectrum reads
P VðkÞ ¼ ��0V

2
0 ð1� jk�0j=2Þ�ð1� jk�0j=2Þ.

Our Hamiltonian (3) shows that the bright soliton sees a
convoluted disorder potential whose k-space components
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are the product ðN�k�=2Þ= sinhð�k�=2ÞVk of Fourier
components from soliton density and speckle potential.
To second order (Born approximation) in the potential
strength, the inverse localization length [13] then reads

�ðkÞ ¼ N4�2�3�0V
2
0 ð1� jk�0jÞ

½sinhð�k�Þ�2 �ð1� jk�0jÞ: (9)

For a short correlation range �0 � �, the k dependence
due to the soliton convolution dominates and the bare
speckle can be approximated by its white-noise limit
P Vð0Þ ¼ ��0V

2
0 . The soliton width � takes over as the

new effective correlation length scale. For 1=ð��Þ< k<
1=�0 one can use the approximate expression

�ðkÞ � ð2�N2�Þ2P Vð0Þe�2��k: (10)

The lowest-order perturbation result (9) can be com-
pared with exact data computed numerically, both by exact
diagonalization and transfer-matrix methods [14] for the
Hamiltonian (3). Figure 1 confirms that Anderson local-
ization is observed for all k values, but also shows that the
localization lengths for the blue- and red-detuned potential
differ by up to an order of magnitude for k� > 0:5.
Consequently, they also differ from the lowest-order per-
turbation results. Thus, perturbation theory cannot be ex-
pected to apply, even though the disorder potential is much
smaller than the kinetic energy of the soliton. But the
salient feature here is the rapid exponential decrease of
�ðkÞ, clearly visible in the inset of Fig. 1. Thus, the inverse
localization length still obeys

� ¼ �0 expð�
kÞ (11)

with 
 / �, the natural length scale of the problem.
Let us return to the c.m. dynamics. The initial state is the

superposition of various k components, with weights given

by Eq. (8). Each k component localizes at long time into
the asymptotic form expf��ðkÞjqj=2g, implying that the
superposition will also localize. If the extension of the
initial state is small compared to the typical localization
length (which is the case here), one can neglect the phase
correlations between the various k components at long
time. The final density distribution, ensemble averaged
over disorder realizations, is then given by

WðqÞ ¼ jc ðqÞj2 ¼
Z

dk
�ðkÞ
2

expf��ðkÞjqjg�0ðkÞ: (12)

Using (11) this integral can be evaluated by a saddle-point
argument from which it becomes apparent that at distance
q, one finds the soliton with an initial momentum kq such

that jqj ¼ 1=�ðkqÞ provided 
�k � 1. The probability

distribution for the soliton position then takes the form

WðqÞ ¼
ffiffiffi
2

p
e
�k

exp½�k2q=�k
2�

jqj ; (13)

where kq ¼ lnð�0jqjÞ=ð
Þ from (11). In the regime of

interest, this is an almost perfect algebraic decrease as
jqj�1 with a small logarithmic correction [15].
These predictions have been tested by numerical inte-

gration of the Schrödinger equation with the Hamiltonian
(3) starting from the initial Gaussian wave function corre-
sponding to (8), and averaging over 250 disorder realiza-
tions. As shown in Fig. 2, the final probability distribution
for the soliton position follows quite well the predicted
algebraic decay. The time scale required to observe a sta-
tionary localized state around position q is given by �ðqÞ ¼
jqj=vðkqÞ ¼ Njqj=kq ¼ 
jqj= lnð�0jqjÞ.
Finally, we turn to the case of repulsive interactions [16]

by taking g ¼ þ1 in (1). The Bose-Einstein condensate
ground state in a harmonic trap extends over the Thomas-
Fermi radius. How such a condensate wave packet expands
in a disordered potential has been studied for different
dimensionalities [17–19]. Because of repulsive interaction,
the entire condensate is an extended object that requires a
fieldlike description, in sharp contrast with a bright soliton
that features particlelike properties.
There exists, however, a dark soliton solution �0 /

tanh½ðx� qÞ=�� where � ¼ 1=
ffiffiffiffi
�

p
and � is the background

density. Then, one can use the nonperturbative description
presented in [9] or a collective-coordinate method [20] to
obtain an effective Hamiltonian for the dynamics of the
dark soliton in the presence of a weak disorder potential:

H0
q ¼ �

�
P2
q

2jMj þ
jMj
4�

Z
dz

VðzÞ
½coshððz� qÞ=�Þ�2

�
: (14)

The mass of the dark soliton is negative, M ¼ �4��, and
its modulus equals twice the number of particles missing in
the soliton notch. This effective Hamiltonian is valid only
when the velocity of the c.m. of the soliton is much smaller
than the sound velocity c ¼ ffiffiffiffi

�
p

in the condensate. At
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FIG. 1 (color online). Inverse localization length of a bright
soliton versus its momentum k in units of its width � ¼ 0:02
(�1 �m) in a speckle potential with correlation length �0 ¼
0:28�. Circles are numerical results obtained by diagonalizing
the effective Hamiltonian (3), solid lines are numerical results
from a transfer-matrix calculation. The bare potential amplitude
is V0 ¼ �0:1 [blue (dark gray) and red (gray) curve] in our units,
corresponding to �8� 10�5j�j. Inset: same data in logarithmic
scale. The lowest-order perturbation result, Eq. (9) is shown as a
black dashed line.
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velocity comparable to c, the shape of the soliton changes,
making the analysis more difficult.

Equation (14) shows that we obtain the same form of the
effective Hamiltonian as for the bright soliton. At first
sight, it predicts similar Anderson localization effects.
However, there is a fundamental difference between dark
and bright solitons. The bright soliton (2), being the ground
state of the N particle system, is protected by a large gap
from quasiparticle excitations. In that respect, entire sol-
itons can undergo quantum dynamics and localize like
rubidium atoms [6]. For the dark soliton a gap can only
be imposed by the boundary conditions in a finite-size
system, and is inversely proportional to the system size,
making radiation of Bogoliubov excitations [21] and deco-
herence much easier. Furthermore, the dark soliton is an
excited state, as signaled by the global minus sign of the
effective Hamiltonian (14). Interactions with the thermal
cloud may accelerate the soliton and make it disappear
[22]. Estimating the relevant time scale and evaluating its
effect on the localization dynamics is left for future work.

In summary we have shown that the center of mass of a
bright soliton may undergo Anderson localization in a
smooth disorder potential. In realistic situations where
the soliton wave packet is prepared in a small region of
space, this leads to an essentially algebraic localization of
the ensemble-averaged atomic density at long times. We
emphasize that the effects discussed here are beyond the
standard mean-field description: while the soliton’s shape
is described by a mean-field theory, its center of mass is
treated quantum mechanically. This has important conse-

quences: although the one-body density matrix will display
Anderson localization as shown in Fig. 2, a single realiza-
tion of the experiment is expected to find a single soliton at
a given random position, with a probability density given
by WðqÞ, Eq. (13).
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FIG. 2 (color online). Probability distribution of soliton posi-
tion q in units of its width � ¼ 0:02 (�1 �m). Blue (dark gray)
and red (gray) lines: Data from numerical integration of the
Schrödinger equation with the Hamiltonian (3) starting in the
ground state of an axial harmonic trap with !z ¼ 100 (2��
64 Hz) and lasting �t ¼ 20 (5 s) for a blue (dark gray) and red
(gray)-detuned speckle potential of amplitude V0 ¼ �8�
10�5� (2�� 0:064 Hz). Data averaged over 250 different real-
izations of the disorder potential. Black dashed line: saddle-point
result (13) for parameters in the Born approximation. The full
integral (12) yields the same curve for jqj � �. The double-
logarithmic inset plot shows the dominantly algebraic decrease
as jqj�1.
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