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We construct a general measure for the degree of non-Markovian behavior in open quantum systems.

This measure is based on the trace distance which quantifies the distinguishability of quantum states. It

represents a functional of the dynamical map describing the time evolution of physical states, and can be

interpreted in terms of the information flow between the open system and its environment. The measure

takes on nonzero values whenever there is a flow of information from the environment back to the open

system, which is the key feature of non-Markovian dynamics.

DOI: 10.1103/PhysRevLett.103.210401 PACS numbers: 03.65.Yz, 03.65.Ta, 42.50.Lc

The prototype of a Markov process in an open quantum
system is given by a quantum dynamical semigroup, i.e.,
by the solutions of a master equation for the reduced
density matrix with Lindblad structure [1,2]. However, in
realistic physical systems the assumption of a Markovian
dynamics can only be an approximation that relies on a
number of mostly rather drastic simplifications. In complex
quantum systems one therefore often encounters dynami-
cal processes which deviate not only quantitatively but also
qualitatively from the relatively simple behavior predicted
by a Markovian time evolution [3].

In view of the large variety of conceptually different
analytical methods and numerical simulation techniques
that have been developed to treat non-Markovian systems
in recent years (see, for example, Refs. [4–15]), the follow-
ing questions arise: How can one rigorously define quan-
tum non-Markovianity and how can one quantify the
degree of non-Markovian behavior in a way which does
not refer to any specific representation or approximation of
the dynamics, e.g., to a master equation with a given
structure? In order to answer these questions one needs a
measure for the non-Markovianity of the quantum dynam-
ics of open systems which, in mathematical terms, repre-
sents a functional of the dynamical map that describes the
time evolution of physical states.

Here, we construct such a measure for non-
Markovianity. This measure is based on the trace distance
of two quantum states which describes the probability of
successfully distinguishing these states. The basic idea
underlying our construction is that Markovian processes
tend to continuously reduce the distinguishability between
any two states, while the essential property of non-
Markovian behavior is the growth of this distinguishability.
Interpreting the loss of distinguishabilty of states as a flow
of information from the open system to its environment,
one is thus led to a simple, intuitive picture, namely, that
the key feature of non-Markovian dynamics is a reversed
flow of information from the environment back to the open
system. An important consequence of this picture is that

the dynamical map of non-Markovian processes must nec-
essarily be nondivisible, a property that is known to play
also a decisive role in the classification of quantum chan-
nels [16].
To construct the measure for non-Markovianity we first

need a measure for the distance of two quantum states �1

and �2. Such a measure is given by the trace distance (see,
e.g., Ref. [17]) which is defined by

Dð�1; �2Þ ¼ 1
2 trj�1 � �2j; (1)

where jAj ¼
ffiffiffiffiffiffiffiffiffi
AyA

p
. The trace distance D represents a

natural metric on the space of density matrices, i.e., on
the space of physical states, satisfying 0 � D � 1. Besides
many other interesting properties, it has a clear physical
interpretation in terms of the distinguishability of quantum
states. Suppose that Alice prepares a quantum system in
one of two states �1 and �2, each with probability 1

2 , and

gives the system to Bob who performs a measurement to
decide whether the system was in the state �1 or �2. One
can show that the quantity 1

2 ½1þDð�1; �2Þ� is then equal

to the probability that Bob can successfully identify the
state of the system. Thus, the trace distance can be inter-
preted as a measure for the distinguishability of two quan-
tum states. A further remarkable feature of the trace
distance is given by the fact that all completely positive
and trace-preserving (CPT) maps � are contractions for
this metric [18],

Dð��1;��2Þ � Dð�1; �2Þ: (2)

This means that no trace-preserving quantum operation can
ever increase the distinguishability of two states.
Suppose now that we have a quantum process given by a

Markovian master equation,

d

dt
�ðtÞ ¼ L�ðtÞ; (3)

with a generator in Lindblad form [1,2],
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L� ¼ �i½H;�� þX
i

�i

�
Ai�A

y
i � 1

2
fAy

i Ai; �g
�
; (4)

involving a time-independent Hamiltonian H as well as
time-independent Lindblad operators Ai and positive re-
laxation rates �i � 0. Such a master equation leads to a
dynamical semigroup of CPT maps �ðtÞ ¼ expðLtÞ, t �
0, which describes the dynamics of the density matrix
through the relation �ðtÞ ¼ �ðtÞ�ð0Þ. By use of the semi-
group property �ð�þ tÞ ¼ �ð�Þ�ðtÞ it easily follows
from Eq. (2) that for all �, t � 0 we have

Dð�1ð�þ tÞ; �2ð�þ tÞÞ � Dð�1ðtÞ; �2ðtÞÞ; (5)

where �1;2ðtÞ ¼ �ðtÞ�1;2ð0Þ. Thus, for all quantum dy-

namical semigroups �ðtÞ the trace distance of the states
�1;2ðtÞ, corresponding to any fixed pair of initial states

�1;2ð0Þ, is a monotonically decreasing function of time.

This is a general feature of quantum Markov processes,
implying that under a Markovian evolution any two initial
states generally become less and less distinguishable as
time increases. We can interpret this loss of distinguish-
ability as a certain flow of information from the system to
the environment which continuously reduces our ability to
distinguish the given states.

The inequality (5) holds for a much larger class of
quantum processes than those described by a master equa-
tion of the form (3). In fact, suppose we have a time-local
master equation of the form

d

dt
�ðtÞ ¼ KðtÞ�ðtÞ (6)

with a time-dependent generator KðtÞ. One can show that
in order to preserve the Hermiticity and trace of the density
matrix, this generator must be of the form [1,7]

KðtÞ� ¼ �i½HðtÞ; �� þX
i

�iðtÞ
�
AiðtÞ�Ay

i ðtÞ

� 1

2
fAy

i ðtÞAiðtÞ; �g
�
; (7)

where the Hamiltonian HðtÞ, the Lindblad operators AiðtÞ,
and the relaxation rates �iðtÞ depend on time. If the relaxa-
tion rates are positive functions, �iðtÞ � 0, the generator
(7) is seen to be in the Lindblad form (4) for each fixed
t � 0. Such processes with �iðtÞ � 0 may be called time-
dependent Markovian although the corresponding dynami-
cal maps �ðtÞ do not lead to a quantum dynamical semi-
group. With the help of the chronological time-ordering
operator T we can define a two-parameter family of CPT
maps �ðt2; t1Þ by means of

�ðt2; t1Þ ¼ T exp

�Z t2

t1

dt0Kðt0Þ
�
: (8)

The dynamical map which transforms the initial states at
time 0 into the states at time t can then be written as�ðtÞ ¼
�ðt; 0Þ. The important point to note is that this dynamical

map has the property of being divisible in the sense that for
all �, t � 0 the CPT map �ð�þ t; 0Þ can be written as
composition of the two CPT maps �ð�þ t; tÞ and �ðt; 0Þ,

�ð�þ t; 0Þ ¼ �ð�þ t; tÞ�ðt; 0Þ: (9)

We remark that for a dynamical semigroup on has
�ðt2; t1Þ ¼ �ðt2 � t1Þ such that Eq. (9) reduces to �ð�þ
tÞ ¼ �ð�Þ�ðtÞ. Since in Eq. (9) not only �ð�þ t; 0Þ and
�ðt; 0Þ but also�ð�þ t; tÞ is a CPT map, we conclude that
the relation (5) holds true for all time-dependent
Markovian quantum processes defined by the master equa-
tion (6) with �iðtÞ � 0.
We define the rate of change of the trace distance by

�ðt; �1;2ð0ÞÞ ¼ d

dt
Dð�1ðtÞ; �2ðtÞÞ: (10)

For a given quantum process�ðtÞ, this quantity depends on
time t and on the initial states �1;2ð0Þ with corresponding

time evolutions �1;2ðtÞ ¼ �ðt; 0Þ�1;2ð0Þ. As has been dem-

onstrated above, we have � � 0 for all quantum processes
for which the divisibility property (9) holds, i.e., for all
dynamical semigroups and all time-dependent Markovian
processes. We remark that Eq. (2) not only holds for CPT
maps, but also for the larger class of positive and trace-
preserving maps [18]. Thus, � � 0 holds true also for
Markovian master equations which are not in Lindlbad
form but preserve positivity.
There are, however, many physical processes for which

� is larger than zero for certain times. It is this type of
process which we define as non-Markovian. Hence, a
process is said to be non-Markovian if there exists a pair
of initial states �1;2ð0Þ and a certain time t such that

�ðt; �1;2ð0ÞÞ> 0. Physically, this means that for non-

Markovian dynamics the distinguishability of the pair of
states increases at certain times. We interpret this as a flow
of information from the environment back to the system
which enhances the possibility of distinguishing the two
states. While Markovian processes tend to wash out more
and more characteristic features of the two states, non-
Markovian processes lead to an uncovering of these fea-
tures. We emphasize that the temporary backflow of infor-
mation represents a natural feature occurring in many
physical systems which does not imply that there is no
thermalization for long times.
How can one construct a measure for non-Markovianity

on the basis of this definition? Clearly, such a quantity
should measure the total increase of the distinguishability
over the whole time-evolution, i.e., the total amount of
information which flows from the environment back to
the system. This suggests defining a measure N ð�Þ for
the non-Markovianity of the quantum process �ðtÞ by
means of the relation

N ð�Þ ¼ max
�1;2ð0Þ

Z
�>0

dt�ðt; �1;2ð0ÞÞ: (11)
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Here, the time-integration is extended over all time inter-
vals (ai, bi) in which � is positive, and the maximum is
taken over all pairs of initial states. In view of Eq. (10) we
can thus write this definition as

N ð�Þ ¼ max
�1;2ð0Þ

X
i

½Dð�1ðbiÞ; �2ðbiÞÞ

�Dð�1ðaiÞ; �2ðaiÞÞ�: (12)

To calculate this quantity one first determines for any pair
of initial states the total growth of the trace distance over
each time interval (ai, bi) and sums up the contributions of
all intervals. N ð�Þ is then obtained by determining the
maximum over all pairs of initial states.

By construction, we have N ð�Þ ¼ 0 for all processes
which have the divisibility property (9). In the following
we discuss two simple examples for which our measure of
non-Markovianity is greater than zero. The aim is to illus-
trate how to determine this quantity in specific cases and
how non-Markovianity is related to a violation of the
divisibility property and to the emergence of negative rates
in master equations of the structure (6).

The first example describes a two-level system with
excited state jþi and ground state j�i which interacts
with a reservoir of field modes. The exact interaction
picture master equation [3] describing the dynamics of
the density matrix is of form of Eq. (6) with the generator
(7), where HðtÞ ¼ 0 and we have only a single time-
independent Lindblad operator A ¼ �� and a time-
dependent rate �ðtÞ. The function �ðtÞ is determined by
the spectral density Jð!Þ of the reservoir. We investigate
the case of a Lorentzian spectral density Jð!Þ ¼
�0�

2=2�½ð!0 ���!Þ2 þ �2�, the center of which is
detuned from the transition frequency !0 of the two-level
system by an amount �, and work in the weak coupling
limit �0=� ¼ 0:01 (damped Jaynes-Cummings model).
For sufficiently large detunings �, the function �ðtÞ then
describes an exponentially damped oscillation and takes on
negative values within certain intervals of time correspond-

ing to a revival of the coherence in the system [3,4]. We
emphasize that this does not imply a violation of the
complete positivity of the corresponding dynamical map
�ðtÞ because the necessary and sufficient condition for
the complete positivity of �ðtÞ is given by �ðtÞ �R
t
0 dt

0�ðt0Þ � 0, which is indeed satisfied here.

However, the trace distance increases for those t for
which �ðtÞ< 0; i.e., we have �ðt; �1;2ð0ÞÞ> 0 for these

times. This point is illustrated in Fig. 1 which shows � as a
function of time t and detuning � for the pure initial states
�1ð0Þ ¼ jþihþj and �2ð0Þ ¼ j�ih�j. For these initial
states one finds the simple expression

�ðt; �1;2ð0ÞÞ ¼ ��ðtÞ exp½��ðtÞ�; (13)

which shows that a positive � and an increase of the trace
distance is linked to a negative rate in the master equation.
Thus, the appearance of negative rates signifies a violation
of the divisibility property (9) and a flow of information
from the environment back to the system.
The maximization over the pair of initial states �1;2ð0Þ in

expression (11) can be performed by drawing a sufficiently
large sample of random pairs of initial states. The results
are shown in Fig. 2 and provide strong numerical evidence
that the maximum is attained for the initial states �1ð0Þ ¼
jþihþj and �2ð0Þ ¼ j�ih�j. This result could have been
expected since �2ð0Þ represents the invariant state and
�1ð0Þ has the largest distance to this state. According to
Fig. 2 N ð�Þ exhibits a nonmonotonic behavior: The in-
crease of the number of intervals in which �> 0 is over-
compensated for large � by the decrease of the size of � in
these intervals.
For the previous example the non-Markovianity N ð�Þ

was found to take on finite, positive values. Our second
example represents a rather extreme case, demonstrating
that there are also processes for which N ð�Þ is infinite.
We consider a central spin with Pauli operator � which

FIG. 1 (color online). (a) The rate of change � of the trace
distance as a function of time t and detuning � for the initial pair
of states �1ð0Þ ¼ jþihþj and �2ð0Þ ¼ j�ih�j. (b) The black
regions represent the regions in which � is positive.
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FIG. 2 (color online). The non-Markovianity N ð�Þ for the
damped Janes-Cummings model as a function of the detuning �.
Blue dots: 1000 randomly drawn pairs of pure and mixed initial
states. Red circles: The initial pair �1ð0Þ ¼ jþihþj and �2ð0Þ ¼
j�ih�j which leads to the maximum in Eq. (11).
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interacts with a bath of N spins with Pauli operators �ðkÞ

through the Hamiltonian H ¼ A
P

N
k¼1 �z�

ðkÞ
z , where A is a

coupling constant. This simple model can easily be solved
exactly [19]. Assuming the initial state of the bath to be a
maximally mixed state, one finds that the populations of
the density matrix of the central spin stay constant in time,
while the coherences are multiplied by the factor fðtÞ ¼
cosNð2AtÞ. This leads to a simple formula for the trace
distance of the states �1ðtÞ and �2ðtÞ,

Dð�1ðtÞ; �2ðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ f2ðtÞjbj2

q
; (14)

where a ¼ �þþ
1 ð0Þ � �þþ

2 ð0Þ denotes the difference of the
populations, and b ¼ �þ�

1 ð0Þ � �þ�
2 ð0Þ the difference of

the coherences of the two initial states. It follows that the

trace distance oscillates periodically between Dmax ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ jbj2p

and Dmin ¼ jaj. This can be interpreted as a
periodic oscillation of the distinguishability of the two
states, i.e., as a periodic exchange of information between
the central spin and the spin bath.

The maximal growth of the trace distance occurs if one
takes as initial states the two eigenstates of�x, or any other
pair of states corresponding to antipodal points on the
equator of the Bloch sphere, such that a ¼ 0 and jbj ¼
1. The trace distance then oscillates periodically between
the values 1 and 0. The sum in Eq. (12) therefore diverges
and we obtain N ð�Þ ¼ þ1, which implies that a
Markovian approximation of the system dynamics is never
possible. One can formally write a master equation of the
form (6) with H ¼ 0, a single Lindblad operator A ¼ �z

and the rate �ðtÞ ¼ AN tanð2AtÞ, which shows again the
connection between the growth of the trace distance and
the emergence of negative rates.

Summarizing, we have constructed a measureN ð�Þ for
the non-Markovianity of quantum processes in open sys-
tems. The definition (11) of the measure neither relies on
any specific representation or approximation of the dynam-
ics, nor does it presuppose the existence of a master
equation or of invariant states. The exact determination
of the measure generally requires solving the complete
reduced system dynamics which could be a difficult task
for more complex problems. However, any observed
growth of the trace distance is a clear signature for non-
Markovian behavior and leads to a lower bound forN ð�Þ.
The measure for non-Markovianity introduced here could
therefore be useful also for the experimental validation of
theoretical models or approximation schemes. To detect
non-Markovianity experimentally one has to perform a
state tomography on different ensembles at different times
in order to decide whether or not the trace distance has

increased. A great advantage of the present approach is
given by the fact that it allows to plan experiments which
test non-Markovianianity without knowing anything about
the properties of the environment or about the structure of
the system-environment interaction. Hence, we think that
our measure is a useful tool for the characterization of non-
Markovianity, both in theoretical descriptions and in
experiments.
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