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Electrons hopping on the sites of a three-dimensional pyrochlore lattice are shown to form topologically

nontrivial insulating phases when the spin-orbit (SO) coupling and lattice distortions are present. Of 16

possible topological classes 9 are realized for various parameters in this model. Specifically, at half-filling

an undistorted pyrochlore lattice with a SO term yields a ‘‘pristine’’ strong topological insulator with a Z2

index (1;000). At quarter filling various strong and weak topological phases are obtained provided that

both SO coupling and uniaxial lattice distortion are present. Our analysis suggests that many of the

nonmagnetic insulating pyrochlores could be topological insulators.
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According to recent pioneering theoretical studies [1,2]
all time-reversal (T ) invariant (nonmagnetic) band insu-
lators in three spatial dimensions can be classified into 16
topological classes distinguished by a four-component to-
pological index (�0; �1�2�3) with �� ¼ 0, 1. Ordinary
‘‘trivial’’ band insulators have an index (0;000) and, in
general, possess no robust surface states. When some of
the � differ from zero then the insulator is said to be
topologically nontrivial and, as a result, possesses topo-
logically protected surface states on at least some of its
surfaces. When �0 ¼ 1 surface states exist on all surfaces
and are in addition robust with respect to weak nonmag-
netic disorder. This is referred to as a strong topological
insulator (STI). Strong topological insulators are predicted
to exhibit a host of unusual phenomena associated with
their nontrivial surface states. These include proximity-
induced exotic superconducting state with Majorana fer-
mions bound to a vortex [3], spin-charge separated soli-
tonic excitations [4,5], and, in a thin film geometry, an
unconventional excitonic state with fractionally charged
vortices [6]. There are also interesting bulk manifestations
of STI physics such as the ‘‘axion’’ electromagnetic re-
sponse [7,8] and the topologically protected fermion
modes localized along the core of a crystal dislocation [9].

Topologically nontrivial insulating phases have been
predicted to occur [10–12] and subsequently experimen-
tally discovered [13–15] in several two- and three-
dimensional crystalline solids. Vigorous search for new
materials in this class is ongoing. With the goal of enlarg-
ing the space of candidate crystalline structures that can
potentially support topologically nontrivial insulating
phases we study in this Letter a class of tight-binding
models with SO coupling for electrons moving on the
pyrochlore lattice displayed in Fig. 1(a). Our model be-
longs to the class of 3D ‘‘frustrated hopping’’ models [16]
and the motivation for this study comes in part from our
recent finding that electrons on the kagome lattice, a ca-
nonical example of the frustrated structure in two dimen-

sions, form a 2D topological insulator when SO coupling is
present [17].
Our main finding here is that, quite generically, when-

ever electrons hopping on the pyrochlore lattice acquire a
band gap from SO interactions the resulting state is either a
STI or a weak topological insulator (WTI), defined as a
state with �0 ¼ 0 but at least one �i¼1;2;3 � 0. At quarter
filling the physics leading to the TI behavior on the pyro-
chlore lattice is somewhat similar to the Fu-Kane-Mele
(FKM) model on the diamond lattice [1]. SO interaction
produces Dirac-type spectrum at the three X points of the
Brillouin zone (BZ), Fig. 1(b), and uniaxial crystal distor-
tion is needed to open up a gap. The resulting Z2 indices
are however different from FKM. At half filling, the band

FIG. 1 (color online). (a) Pyrochlore lattice is a face-centered
cubic Bravais lattice with a 4-point basis forming a shaded
tetrahedron. (b) The first Brillouin zone of the fcc lattice with
high-symmetry lines and points indicated. (c) Band structure of
the tight-binding model Eq. (1). (d) Band structure with spin-
orbit coupling Eq. (3) for � ¼ �0:1t (solid line) and � ¼ 0:1t
(dashed line).
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crossing occurs at the � point and is quadratic rather than
Dirac-like. In this case SO coupling by itself opens up a
gap and no lattice distortion is required. This is, to our
knowledge, a unique behavior, which produces a highly
symmetric ‘‘pristine’’ STI characterized by index (1;000).

We now supply the technical details supporting these
claims. Our starting point is the tight-binding model

H0 ¼ �t
X
hiji�

cyi�cj�; (1)

where cyi� creates an electron with spin � on the site ri
of the pyrochlore lattice and hiji denotes nearest neigh-

bors. In momentum space Eq. (1) becomes H0 ¼P
k��

y
k�H

0
k�k� with �k� ¼ ðc1k�; c2k�; c3k�; c4k�ÞT

and H 0
k of the form

� 2t

0 cosðkx � kyÞ cosðkx þ kzÞ cosðky � kzÞ
0 cosðky þ kzÞ cosðkx � kzÞ

0 cosðkx þ kyÞ
0

0
BBB@

1
CCCA:

The lower triangle of the matrix is understood to be filled
so that the matrix is Hermitian. The spectrum of H 0

k,

Fig. 1(c), consists of two degenerate flat bands Eð3;4Þ
k ¼

2t and two dispersive bands

Eð1;2Þ
k ¼ �2t½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ak

p �; (2)

with Ak ¼ cosð2kxÞ cosð2kyÞ þ cosð2kxÞ cosð2kzÞ þ
cosð2kyÞ cosð2kzÞ. Eð2Þ

k touches the two flat bands at the �

point and the band crossing is quadratic. Eð1Þ
k and Eð2Þ

k touch

along the lines located at the diagonals of the square faces
of the BZ.

At the half-filling, bands 1 and 2 are filled completely,
and the two degenerate flat bands are empty. This state is a
gapless band insulator. We now seek terms bilinear in the
electron operators that lead to the formation of a gap at the
quadratic band crossing point. We focus on perturbations
that do not further break the translational symmetry of H0

and preserve T . A natural term to consider is a SO
interaction of the form

HSO ¼ i�
X

hhijii��
ðd1

ij � d2
ijÞ � ���c

y
i�cj�; (3)

where � is the SO coupling strength, d1;2
ij are nearest-

neighbor vectors traversed between second neighbors i
and j, and � is the vector of Pauli spin matrices. Since

d1;2
ij lie in three-dimensional space, the Hamiltonian does

not decouple for the two spin projections and in k space
becomes an 8� 8 matrix. Figure 1(d) shows the spectrum
ofH 0

k þH SO
k . For � > 0 it remains gapless but for � < 0

a gap �SO ¼ 24j�j opens at the � point. This peculiar
behavior can be understood by studying the matrixH 0

k þ
H SO

k at k ¼ 0. It is easy to see that the SO coupling splits
the sixfold degeneracy into a twofold degenerate level at

2tþ 16� and a four-fold degenerate level at 2t� 8�. For
�=t < 0 this allows the four-fold degenerate flat band to
split off from the twofold degenerate dispersive band. We
shall see momentarily that the resulting state is a STI.
Although the SO interaction reduces the degeneracies of

bands 1 and 2, they still touch at three inequivalent Dirac
points Xr ¼ 2�r̂=a, where r ¼ x, y, z. At quarter-filling
band 1 is fully occupied and it is interesting to ask what
T -invariant perturbation would open up a gap at the Dirac
points. We have been able to identify two such terms:
(i) lattice distortions leading to anisotropy in the nearest-
neighbor hopping amplitudes, and (ii) modulations in on-
site potentials within the unit cell. Both of these preserve
the unit cell, the inversion symmetry and T .
For the lattice distortions, since there are six hopping

amplitudes in the unit cell Fig. 1(a), one has many choices.
We now describe four ‘‘basic’’ highly symmetric anisot-
ropy patterns that open up gaps with equal magnitude at all
three Dirac points. We then classify the resulting insulating
phases and argue that this classification is in fact exhaus-
tive. The basic distortion, labeled by l ¼ 1, 2, 3, 4, is
obtained by selecting site l in the unit cell and changing

t ! t� �: (4)

The þ sign refers to the six bonds emanating from site l
whereas the � sign refers to all remaining bonds. This can
be achieved by deforming the crystal along the axis passing
through the site l and the center of the tetrahedron. For
pattern 1, the Hamiltonian H dis

k describing this modula-
tion takes the form

� 2�

0 cosðkx� kyÞ cosðkxþ kzÞ cosðky � kzÞ
0 �cosðky þ kzÞ �cosðkx � kzÞ

0 �cosðkx þ kzÞ
0

0
BBB@

1
CCCA

for both spin projections. For l ¼ 2, 3, 4 the signs in front
of the cosine terms are permuted in an obvious way. The
full expression for the spectrum ofH 0

k þH SO
k þH dis

k is

complicated but it is easy to establish that gaps�dis ¼ 4j�j
simultaneously open up at all the Dirac points.
As mentioned above a gap also opens up as a result of

on-site potential modulation. A convenient symmetric
choice defines pattern l as �l ¼ 3	 and �k�l ¼ �	 with
	 a constant.
We now study the topological classes of these insulating

phases. As shown in Ref. [11] the Z2 topological invariants
(�0; �1�2�3) are easy to evaluate when a crystal possesses
inversion symmetry. The invariants can be determined
from knowledge of the parity eigenvalues 
2mð�iÞ of the
2mth occupied energy band at the 8 T -invariant momenta
(TRIM) �i that satisfy �i ¼ �i þG. The 8 TRIM in our
system can be expressed in terms of primitive reciprocal
lattice vectors as �i¼ðn1n2n3Þ ¼ ðn1b1 þ n2b2 þ n3b3Þ=2,
with nj ¼ 0, 1. Then �� is determined by the product
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ð�1Þ�0 ¼ Q
nj¼0;1�n1n2n3 , and ð�1Þ�i¼1;2;3 ¼Q

nj�i¼0;1;ni¼1�n1n2n3 , where �i ¼
Q

N
m¼1 
2mð�iÞ.

Our model is inversion symmetric for all pertur-
bations discussed above and so we can use this method
to find �. If we select site 3 of the unit cell, Fig. 1(a),
as the center of inversion then the parity operator
acts as P ½c 1ðrÞ; c 2ðrÞ; c 3ðrÞ; c 4ðrÞ� ¼ ½c 1ð�r� a1Þ;
c 2ð�r� a3Þ; c 3ð�rÞ; c 4ð�r� a2Þ� on the four-
component electron wave function in the unit cell labeled
by vector r. In momentum space and including spin the
parity operator becomes a diagonal 8� 8 matrix P k ¼
diagðe�ia1�k; e�ia3�k; 1; e�ia2�kÞ � diagð1; 1Þ. It is straight-
forward to obtain the eigenstates of H �i

and the parity

eigenvalues of the occupied bands numerically, then de-
termine the Z2 invariants. At half filling, we find that � ¼ 1
at the � point and � ¼ �1 at other TRIM, so the spin-orbit
phase is a (1;000) strong topological insulator.

At quarter filling, we find 8 Z2 classes, depending on the
type of the distortion. Four of these are STIs and 4 are
WTIs (Table I). The distinction between STI and WTI is
easy to understand on physical grounds by considering
some limiting cases. In the limit � ! �t the electrons
can only move in decoupled parallel planes, each forming
a 2D kagome lattice. Electrons hopping in the kagome
lattice with spin-orbit interaction of the form (3) produce
a 2D topological insulator [17]. A collection of such planes
results in WTI even after interplane coupling is restored.
When � ! t, on the other hand, the resulting structure
remains 3-dimensional and STI behavior prevails.

To develop better understanding for the insulating
phases at quarter filling we now examine the form of the
low-energy Hamiltonians governing the excitations in the
vicinity of the three Dirac points. This is obtained by
linearizing H 0

k þH SO
k þH dis

k near Xr and subse-
quently projecting onto the subspace associated with bands
1 and 2. Near the Xz point we rescale momenta as
12�kxðkyÞ ! kxðkyÞ and 4tkz ! kz, and obtain a three-

dimensional Dirac Hamiltonian,

H z
eff ¼ �xkz þ ð�xkx þ �ykyÞ�y þ 2ml

z�
z: (5)

H x;y
eff are the same with x, y and z permuted in ki and �i.

Index l in the mass labels the distortion pattern and the
values of masses are shown in Table I. We observe that l ¼

1, 2, 3, 4 and two possible signs of � exhaust all possible
sign combinations for the three Dirac masses. Since the Z2

index can only change when at least one of the masses goes
through zero it follows that our classification in Table I is
exhaustive. In particular given any cell-periodic pattern of
bond distortions and on-site energies the Z2 class is
uniquely determined by the pattern of the Dirac mass signs
listed in Table I.
One can also study the origin of the topologically pro-

tected surface states using the above low-energy
Hamiltonian (5). Consider, for the sake of concreteness, a
boundary between two different phases, running along,
say, the z ¼ 0 plane in real space. We take distortion
pattern 2, �< 0 in the left half-space and pattern 1, �>
0 in the right half-space. The mass mz necessarily under-
goes a sign change across the z ¼ 0 boundary. Such a
soliton mass profile is known to produce massless states
in the associated Dirac equation, localized near the bound-
ary [18]. Specifically, 3D Dirac equation

½�i�x@z þ ð�xkx þ �ykyÞ�y þmðzÞ�z�kðzÞ ¼ EkðzÞ
(6)

with mðz ! �1Þ ¼ �m0 has gapless solutions

�kðzÞ ¼ 1ffiffiffi
2

p
�’k

�i’k

1
i

0
BBB@

1
CCCAe

�
R

z

0
mðz0Þdz0 ; (7)

extended in the z ¼ 0 plane but localized in the transverse
direction, with linearly dispersing energy E� ¼ �k, where

’k ¼ ðkx � ikyÞ=k and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The number of gap-

less states determines the topological class of the phases on
two sides of the boundary. If the number is odd, the
boundary is between a WTI and a STI phase. If the number
is even, the boundary is between two WTI or two STI
phases.
To further support our identification of topological

classes given above, we have performed numerical diago-
nalizations of the lattice Hamiltonian H0 þHSO þHdis

using the slab geometry. Figure 2 shows the two-
dimensional band structures of a representative sample of
the insulating phases obtained for various patterns of crys-
tal distortions. We consider a slab geometry with two 111
surfaces, and plot band energies along lines that connect
the four surface TRIM. Four bulk bands are clearly visible
and there are also surface states some of which traverse the
gap.
At half filling the system is in the (1;000) STI phase (we

take � < 0). Irrespective of the lattice distortion there is a
single Fermi surface (FS) around the � point for each
surface. Since the two surfaces are inequivalent in this
geometry the Fermi surfaces are also different.
At quarter filling more possibilities arise. In the WTI

phases (0;111) and (0;100) the (even) number of surface FS

TABLE I. Z2 class for the insulators at quarter filling and the
corresponding Dirac mass values in the low-energy effective
Hamiltonian (5) for different distortion patterns and arbitrary
� � 0.

Dis Mass (mx, my, mz) Z2 class Z2 class

1 ��, �, � �< 0 0;100 �> 0 1;100

2 �, ��, � �< 0 0;001 �> 0 1;001

3 �, �, �� �< 0 0;111 �> 0 1;111

4 ��, ��, �� �< 0 0;010 �> 0 1;010
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depends on the orientation of the surface vector with
respect to (�1�2�3), as discussed in Ref. [1]. For instance
the 111 surface has no surface FS in the (0;111) insulator
while there are two per surface in the (0;100) phase. In the
STI phase (1;100) and (1;111) there are 1 and 3 Dirac
points on TRIM, respectively. Near each such Dirac point a
pair of robust spin-filtered states exists. Crossings at other
momenta can occur; however there is always an even
number of such crossings, confirming the above
arguments.

Many insulating compounds with pyrochlore structure
are known to exist [19]. These follow a formula A2B2O7

with A typically a rare earth and B a transition metal
element. Existing experimental studies so far focused
mostly on the magnetic pyrochlores due to their promise
as candidate systems for exotic spin liquid and spin ice
ground states brought about by the geometric frustration
inherent to the pyrochlore structure. Our theoretical results
show that nonmagnetic pyrochlores with strong SO cou-
pling could exhibit interesting physics. One promising
candidate is pyrochlore Cd2Os2O7 which shows insulating
behavior below 225 K [20]. Band structure calculations in
this compound favor nonmagnetic ground state and indi-
cate strong SO effects [21]. Also promising are the Ir-based
pyrochlores A2Ir2O7 since various Ir-based transition metal
oxides have been predicted and reported to exhibit signifi-
cant SO effects [22–24]. In addition, for A ¼ Nd, Sm, Eu
metal-insulator transitions have been reported at 36, 117
and 120 K, respectively [25].

Whether a particular pyrochlore is a topological insula-
tor can be established only through a detailed band struc-
ture calculation or an experimental measurement. These
are clearly beyond the scope of our present study. It is
however very encouraging to note that, in a preprint that
appeared after the completion of this work, Pesin and

Balents [26] derived a semirealistic tight-binding model
for A2Ir2O7 (A ¼ Pr , Eu) and found band structures for
active orbitals closely resembling that displayed in
Fig. 1(d) for �=t < 0. They find, in agreement with our
results, that the system at half filling is a pristine strong
topological insulator. We conclude that pyrochlore oxides
are likely to open a new frontier in the quest for techno-
logically useful topological insulators and, more generally,
exciting new topological states of quantum matter. Clearly,
detailed band structure calculations and careful experimen-
tal studies of these families of materials are warranted.
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FIG. 2. Band structures for a slab with a 111 face in various
insulating phases with � ¼ �0:1t and j�j ¼ 0:2t. The Z2 index
refers to quarter filling. At half filling all four panels represent a
(1;000) STI. The inset shows the surface BZ with high-symmetry
points marked.
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