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The Hamiltonian theory of the fractional quantum Hall regime provides a simple and tractable approach

to calculating gaps, polarizations, and many other physical quantities. In this Letter we include disorder in

our treatment and show that a simple model with minimal assumptions produces results consistent with a

range of experiments. In particular, the interplay between disorder and interactions can result in

experimental signatures which mimic those of spin textures.
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Static disorder is crucial to the phenomenology of the
integer quantum Hall effect (IQHE) [1,2]. The strong
perpendicular magnetic field quantizes the kinetic energy
of the two-dimensional electron gas into Landau levels.
While static disorder broadens each Landau Level (LL),
only the state at the center of the broadened LL is extended
at T ¼ 0, while all other states are localized [3]. This
produces the plateau in the Hall resistance as the chemical
potential � traverses the localized states and the plateau
transition when � crosses the extended state. Merely
broadening the LLs is not enough to decrease the transport
gap. Because the transport gap depends on extended states,
one needs to shift the energies of the extended states
relative to � to change the transport gap.

In the fractional quantum Hall effect (FQHE) [4], the
qualitative role of disorder is to localize the quasiparticles,
while the quantumHall condensate carries the Hall current.
Theoretical gaps �Th computed by numerical methods
[5,6] are much larger than the measured gaps �Ex [7].
Empirically, one uses �Ex ¼ �Th � � [7], where � is a
measure of the disorder broadening. As stated above, dis-
order broadening by itself cannot account for the reduction
of the transport gap.

In previous work, the effect of dopant disorder on the
magnetoroton minimum at 1

3 has been investigated [8]

within the single-mode and self-consistent Born approx-
imations, and it shows a large broadening of the minimum.
Also, pointlike disorder at � ¼ 1

3 [9] has been treated

numerically in a finite-size system, and the transport gap
is found to be suppressed.

It is the purpose of this Letter to use the Hamiltonian
theory [10] of composite fermions to develop an approxi-
mate approach which can treat long-range dopant disorder
for arbitrary fractions in the bulk at nonzero temperatures.
We start with Jain’s composite fermion (CF) picture [6], in
which electrons are bound to 2s units of statistical flux to
form CFs. The statistical flux cancels part of the external
magnetic flux, leading the CFs at the principal fractions
� ¼ p=ð2spþ 1Þ to see just the right effective field to fill
p CF-LLs. Thus, the FQHE of electrons is mapped into the
IQHE of CFs [6]. Following the Chern-Simons [11] ap-

proaches, Shankar and the present author developed a
Hamiltonian theory [10] to describe the dynamics of CFs
in the LLL, which we now very briefly describe.
In the LLL, only the electron guiding center coordinate

Re (with ½Rex; Rey� ¼ �il2, where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

h=eB
p

is the mag-

netic length), is active, and the interaction Hamiltonian of
the projected density ��ðqÞ ¼ P

e�iq�Rej controls the dy-
namics. To get to a starting point from which one can apply
conventional many-body techniques, we introduce ficti-
tious pseudovortex coordinates Rv (½Rvx; Rvy� ¼ il2=2�)

and combine Re, Rv to obtain the coordinates r and
velocity operators � (½�x;�y� ¼ ið1� 2�Þ=l2) of CFs

seeing a reduced field. Now the Hartree-Fock (HF) ground
state is just one where the CFs fill the lowest p CF-LLs.
One also has to constrain the pseudovector density ���ðqÞ ¼
P

e�iq�Rvj to have no fluctuations. While this can be taken
into account by a conserving approximation [12,13], we
have found that the ‘‘preferred density’’ ���pðqÞ ¼ ��ðqÞ �
c2 ���ðqÞ, which has the correct charge and dipole moment of
the CF, is a convenient shortcut [10]. When used in combi-
nation with the CF-HF state this approximation produces
semiquantitative agreement with experiment for many
quantities [14,15]. In the following, we will use this ap-
proximation to compute excitation energies with disorder.
Our starting point for the clean system is

H ¼ �EZSz þ 1

2

Z d2q

ð2�Þ2 ~vðqÞ ���
pðqÞ ���pð�qÞ; (1)

where now we include an implicit sum over spins in the
density operator, and EZ is the Zeeman energy. Applying
the HF approximation to this Hamiltonian, one obtains the
energies of the CF-LLs (� ¼ �1 is the spin index)

�n� ¼ �EZ�

2
þ

Z d2q

ð2�Þ2 ~vðqÞ
X

m

1� nFðm�Þ
2

j ���pðqÞmnj2;

(2)

where ���pðqÞmn is the matrix element of the preferred
density operator between the CF-LLs m, n. Note that the
energy is strongly dependent on the occupations of the CF-
LLs via CF-exchange terms.
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Now we turn to disorder. Efros [16] pointed out that
since a quantum Hall state is incompressible, it cannot
screen the disorder from the distant dopants linearly. The
2DEG forms compressible puddles of size s (the distance
between the dopants and the 2DEG), with incompressible
strips separating them. The electrons feel a self-consistent

short-range potential which has the natural scale of Ec ¼
e2="l � ffiffiffiffi

B
p

. In contrast, in the compressible � ¼ 1
2 system

[11,12], a B-independent disorder width gives good agree-
ment [17] with nuclear relaxation rate data [18].

Inspired by the Efros picture [16], we construct a model
which treats disorder in the self-consistent Born approxi-
mation (SCBA) and interactions in the HF approximation.
Since disorder can mix the different CF-LLs, we allow
independent dimensionless coupling coefficients �mn [the
average of the square of the matrix elements of the disorder
potential (in units of Ec) between CF-LLs m and n]

�mn ¼
Z d2q

ð2�Þ2 j ���
pðqÞmnðqÞj2 hhjVdisðqÞj2ii

E2
cl

2
: (3)

Here Vdis is the self-consistent screened disorder potential,
and hhii denotes ensemble averaging over the disorder.
While a microscopic calculation of �mn is beyond the
scope of this work, one can make a number of robust
statements. (i) �mn are roughly B independent. (ii) �mn

generically decreases as m, n increase due to the structure
of the matrix elements, with �00 being the largest.
Physically, since the wave functions of the higher CF-
LLs are more extended and have nodes, they ‘‘average
out’’ the disorder more. (iii) For the same m, n, different
spin species can have somewhat different �, since the
majority species also sees an exchange potential. (iv) The
typical magnitude of � should correspond to the � used in
the empirical fits, that is, Ec

ffiffiffiffi

�
p ’ 1 K, implying � ’ 10�3

for typical B. (v) Though there are many free parameters,
only �00" and �00# are relevant to the physics at � ¼ 1

3 , as

will be seen below. The rest can all be given the same
value.

Combining SCBA and HF we obtain

�n�ð!Þ ¼ E2
c

X

m

�mnGm�ð!Þ;

Gm�ð!Þ ¼ 1

!� �m� � �m�ð!Þ ;

nFðm�Þ ¼ �
Z d!

�

Im½�m�ð!Þ�
1þ exp½�	ð!��Þ� :

(4)

Equations (2) and (4) are iterated to self-consistency at
T � 0, with the global condition of 1

3 filling being main-

tained by adjusting �.
To obtain the transport gaps and other extended excita-

tions, we will assume, in analogy with the IQHE [3], that
the CF states are localized except at the ‘‘band center’’ of
the disorder-broadened CF-LL. This is plausible, since the
motion of a CF now occurs in some (self-consistent)
random potential in a set of CF-LLs. There are two natural

ways to identify the band center: (i) as the CF-HF energy
�m� or (ii) as the energy at which the density of states of the
disorder-broadened CF-LL is the highest. The author has
verified that the two choices exhibit no qualitative differ-
ences and only very small quantitative ones, and in what
follows we will use choice (i). At this level the theory does
not treat magnetoexcitons, except in the q ! 1 limit,
when they converge to the gaps between the CF-LLs.
Note that the structure of the puddles can be complex,
involving Wigner crystallites, etc., but since the extended
states lie in the incompressible strip, the detailed structure
of the puddles is irrelevant for the extended states, which
makes the self-consistent Born approximation plausible.
We use the Zhang–Das Sarma potential [19] vðqÞ ¼

2�Ece
�
q=ðqlÞ with the thickness parameter 
 ¼ 0:6l.

This choice makes our CF-HF gap for the clean system
reproduce the numerical gap of 0:103Ec [5,6] for the pure
Coulomb interaction in the LLL. All results we present
below are for this choice and T ¼ 50 mK.
CF exchange depending on CF-LL occupations is an

important contribution to the gaps [Eq. (2)]. The n ¼ 0,
� ¼" CF-LL, which was fully occupied in the clean sys-
tem, is now partially occupied, as are the rest of the CFs
in higher CF-LLs whose densities of states overlap the
n ¼ 0 " CF-LL. At self-consistency, the energy of the
n ¼ 0 " CF-LL increases compared to the clean system,
while that of all other CF-LLs decreases, leading to a
decrease of all the gaps. We define the transport gap as
2�minð�� �0;"; �0;# ��; �1;" ��Þ.
Recently, Dethlefsen et al. [7] have studied the transport

gap at 13 as a function of perpendicular field for two differ-

ent samples. Using the empirical fit �ex ¼ �th � � they
interpret the measurements for sample A (mobility 4:5�
106 cm2=Vs) as showing a crossing of the n ¼ 0 # CF-LL
with the n ¼ 1 " CF-LL with increasing EZ, while
sample B (mobility 3:5� 105 cm2=Vs) does not show
this. In Fig. 1, we show the experimental results and the
results of our approach with a few different sets of parame-
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FIG. 1. A comparison of experimental gaps at 1
3 of Dethlefsen

et al. [7] as a function of total perpendicular field and the
predictions of our approach. For sample A, �mn ¼ 5� 10�4

and vary �00, while for sample B we use �00" ¼ 1:65� 10�3,

�00# ¼ 2:2� 10�3, �mn ¼ 5:25� 10�4.

PRL 103, 206802 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 NOVEMBER 2009

206802-2



ters, all of which are assumed to be independent of B. The
agreement is at the few percent level. Theoretically, the
system is not fully polarized even at the highest field. The
n ¼ 0 # CF-LL crosses the n ¼ 1, " CF-LL around 4.5 T in
sample A. At low fields (below 2 T for sample A and below
5 T for sample B), the calculated chemical potential lies
beneath the band center of the lowest CF-LL, showing the
absence of the QHE.

Finally, a caveat about the assumed B independence of
�mn: as B increases, the self-consistent gap increases, the

width of the Efros strip [16] also increases as
ffiffiffiffi

�
p

, and the
disorder can be expected to decrease. On the other hand, as
B increases, the thickness (
) of the 2DEG in units of l

increases (like B1=6), which will tend to decrease the gap.
However, in the absence of a microscopic theory�mn and 

have been kept constant.

Let us now turn to inelastic light-scattering experiments
[20], which can access excitations invisible in transport,
such as spin-wave and spin-flip excitations [20] and, po-
tentially, magnetoroton excitations. Recently Groshaus
et al. [21] have reported measurements in an extremely
clean sample (mobility �7� 106 cm2=Vs) in a tilted
field. They see two excitations: one which hardly disperses
with EZ, which they identify as the magnetoroton (MR),
and another mode which disperses sharply upwards with
EZ, which they consequently identify as a spin-texture (ST)
mode with spin 2. The two excitations are observed to
have very different T dependences: the MR mode strength
decreases with increasing T while that of the ST mode
increases.

In analyzing light-scattering, the disorder is necessary
(to couple the photon of q � 0 to nonzero q excitations)
but is usually assumed to be weak, so that the structure of
the magnetoexciton dispersions are unchanged. In the
weak-disorder case, the extrema of the magnetoexciton
dispersions are picked out as the energies with the highest
density of states and appear as peaks in the spectra.

However, it is not clear that the quantum Hall system is
in the weak-disorder limit. The analysis of Ref. [8] shows
that, generically, the disorder-induced width of the mag-
netoroton minimum should be of the order of its en-
ergy (�0:05Ec for a clean system). Physically, this corre-
sponds to the magnetoexciton energy being strongly modi-
fied by its local environment so that it attains a broad range
of values. However, peaks seen in light scattering are
considerably sharper [20,21].

We will use the gaps between the extended states at the
center of the CF-LLs and not the magnetoroton minimum
(which, in any case, the theory presented here cannot
access) to compare to light-scattering data. Since the inci-
dent light has a wavelength �800 nm � l the coherent
response to the light comes from regions much bigger than
the puddles. Extended states occur at the same energy at
every location in the sample. Thus, transitions between
extended states produce a sharp feature in light scattering,
a view supported by a recent calculation [22]. Figure 2

compares the predicted n ¼ 0 ") n ¼ 1, " and n ¼ 1,
") n ¼ 0, # CF-LL gaps to the MR and ST modes,
respectively.
Our interpretation makes it natural that, as observed

[21], the strength of the ST mode should increase as T
increases, while that of the MR mode should decrease, due
to the T-dependent factors of nFðiÞ½1� nFðfÞ� in the tran-
sition amplitude. The slight reduction in energy of the MR
mode seen in the data [21] is also reproduced theoretically
and is a CF-exchange effect.
In summary, we have presented an approach which

allows the phenomenological treatment of disorder in the
bulk FQHE at any T. The key ingredients are the
Hamiltonian theory [10] of composite fermions [6] and
the disorder-averaged self-consistent Born approximation
for treating the disorder, modeled by the Efros picture [16]
of puddles of size s (the distance between the 2DEG and
the dopant layer) separated by incompressible strips of the
typical size of a few magnetic lengths. A maximum of
three parameters�00",�00#, and the other�mn are sufficient

to quantitatively fit the data over a broad range of fields.
We find that the observed reduction of the gap at 13 is the

result of an interplay between the disorder broadening of
the CF-LLs and the strong occupation dependence of the
CF-LL energies (CF exchange). The interplay of disorder
and interactions produces strong Zeeman dependences of
transport and other gaps which can easily be mistaken for
Skyrmions [23] or other spin structures. As in previous
work by the present author at � ¼ 1 [24], the observed
large slope of the transport gap [25] is consistent with an
exchange-enhanced disorder effect. This explanation is not
new [26] and is worthy of reexamination in light of recent
nuclear magnetic resonance (NMR) results, which indicate
that Skyrmions are actually localized [27] at and around
� ¼ 1 at T ¼ 0. It is also consistent with numerical work
[28] showing that localized spin textures occur in the
ground state for realistic disorder strength and with NMR
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FIG. 2. A comparison of the light-scattering data of Groshaus
et al. [21] to theoretical results for the n ¼ 0 ") n ¼ 1, " and
n ¼ 1, ") n ¼ 0, # CF-LL gaps. The theoretical results are for
�00" ¼ 1:2� 10�3, �00# ¼ 1:1� 10�3, and other �mn ¼ 6:5�
10�4.
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data around � ¼ 1
3 which show no signatures of Skyrmions

[29].
A key assumption here is that the CF extended state is at

the disorder-averaged HF energy of that CF-LL. While it is
plausible that there is one and only one extended state per
CF-LL at T ¼ 0, there is no microscopic understanding of
where it should lie. Another whole class of quite myste-
rious data on the compressibility [30] of the FQH states
exists to which the methods developed here are applicable.
Finally, the theory needs to be developed to the point where
the � parameters are calculable from first principles, even
if approximately.
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