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Motivated by recent experimental interest in tunneling into heavy-electron materials, we present a

theory for electron tunneling into a Kondo lattice. The passage of an electron into a Kondo lattice is

accompanied by a simultaneous spin flip of the localized moments via cotunneling mechanism. We

compute the tunneling current with the large-N mean field theory. In the absence of disorder, differential

tunneling conductance exhibits two peaks separated by the hybridization gap. Disorder effects lead to the

smearing of the gap resulting in a Fano line shape.
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Major developments in scanning tunneling electron
spectroscopy (STEM) over the last decade, particularly
as a probe of cuprate superconductors [1–4], suggest that
this tool will find increasing utility as an atomic-scale
probe of many-body phenomena in new classes of materi-
als. One area of particular promise lies in the application of
STEM to heavy-fermion materials.

Heavy-fermion compounds contain a dense lattice of
localized magnetic moments interacting with a sea of
conduction electrons to form a ‘‘Kondo lattice’’ [5,6].
These materials exhibit a diversity of many-body behav-
iors, including anisotropic superconductivity, Kondo insu-
lating behavior, and quantum criticality. Motivated by
recent tunneling experiments on f-electron materials [7–
9], in this Letter we develop a theory for tunneling into a
coherent Kondo lattice.

How do electrons tunnel into a Kondo lattice, where the
main degrees of freedom are local moments? Since direct
tunneling into localized magnetic orbitals is blocked by
Coulomb interactions, the naive expectation is that the
electrons can only tunnel into the surrounding conduction
sea. In 1960s Anderson and Appelbaum [10–12] recog-
nized that magnetic ions actively participate in the tunnel-
ing process via a ‘‘cotunneling mechanism’’ [13,14] in
which the passage of a tip electron into the conduction
sea occurs cooperatively with a spin-flip of localized mo-
ments (Fig. 1). The manifestation of cotunneling in the
tunneling conductance of quantum dots and magnetic
atoms adsorbed on surfaces is well established experimen-
tally [13–16]. Here we examine the effect of these pro-
cesses on tunneling into a coherent band of excitations of a
Kondo lattice, deriving a new expression for the tunneling
current into a Kondo lattice in terms of the Green’s func-
tion of composite cotunneling operators. Using the large-N
approximation, we show how cotunneling processes open a
direct tunneling channel between the tip and the composite
quasiparticle states of the Kondo lattice. Once coherence
develops, cotunneling and direct tunneling processes inter-
fere, giving rise to distinctive two-peak structures in tun-
neling spectra.

We begin by writing down the Kondo lattice
Hamiltonian in the presence of a tunneling probe, which

takes the form Ĥ ¼ ĤKL þ Ĥtip þ ĤT , where

Ĥ KL ¼ X
k;�

�kc
y
k�ck� þ J

X
j

~SfðjÞ � ðcyj� ~���cj�Þ (1)

is the unperturbed Kondo lattice Hamiltonian, cj� ¼
ð1= ffiffiffiffi

V
p ÞPkck�e

ik�Rj creates a conduction electron and
~SfðjÞ is the spin operator of a localized f electron at site

j, respectively. The term Ĥtip ¼ P
k��kp

y
k�pk� describes

the electrons in the tip. A crucial new feature of this model
lies in the composite character of the tunneling
Hamiltonian. When the tip lies in the vicinity of site 0,
the tunneling Hamiltonian is given by

FIG. 1 (color online). Electron tunneling into a heavy-fermion
material involves two parallel processes: direct tunneling with
amplitude tc into the conduction sea, and cotunneling with
amplitude tf into a composite combination of the conduction

electron and local magnetic f moments. These composite states
are expected to develop coherence below the Kondo temperature
TK. Inset shows a typical differential conductance curve ob-
served for tunneling into a single Kondo ion.
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Ĥ T ¼ py
0�c 0� þ H:c:; (2)

where

c 0� ¼ tcc0� þ ~tf½ ~��� � ~Sfð0Þ�c0� (3)

contains a direct tunneling term of amplitude tc and a
cotunneling term of amplitude tf. From the equations of

motion, the tunneling current operator is

Î ¼ e _Nc ¼ ie

@

X
�

ðc y
0�p0� � H:c:Þ; (4)

where Nc ¼ P
k�c

y
k�ck� is the number operator of the

conduction electrons. From the form of Î and ĤT , we see
that the passage of an electron from the tip into the lattice is
accompanied by a spin flip of a local moment. In this way,
one-particle states in the tip are coupled to the composite
fields which define heavy-electron quasiparticles.

The Hamiltonian (2) is a Kondo lattice generalization of
the Anderson-Appelbaum tunneling Hamiltonian [11,12],
first introduced to explain zero-bias anomalies associated
with tunneling between two metallic leads via a single
localized moment. Similar models have subsequently
been used to describe tunneling through a quantum dot
[14]. The cotunneling component of HT can be understood
as a result of mixing between states in the tunneling tip and
the localized orbitals of the Kondo lattice. This process
distorts the symmetry of the Wannier states that hybridize
with the localized moments, partially delocalizing them
into the tip. A derivation of the cotunneling terms can be
done by carrying out a Schrieffer-Wolff transformation on
the Anderson model describing the lattice and the tip
[12,14,17]. In the Anderson model, the localized
f electrons hybridize with the conduction electrons.
When a tip is introduced above site 0 of the lattice, tunnel-
ing between the f state and the probe electrons modifies

the hybridization according to Ĥh ! ðVcy0� þ
tfp

y
0�Þf0� þ H:c:, where tf is the amplitude to tunnel

directly from an f state to the probe, so that the tip modifies
the orbital hybridizing with the f state:

c0� ! c0� þ tf
V
p0�: (5)

After a Schrieffer-Wolff transformation is carried out,
which reduces the Anderson model to a Kondo model,
this same replacement must be made to the Kondo inter-
action at site 0 in the unperturbed Kondo lattice model. To
leading (linear) order in tf=V, the result of this procedure is

the quoted result in (3), where ~tf ¼ Jtf=V.

Next, we compute the tunneling current. One of the
questions that immediately arises, is whether the differen-
tial conductance can be analyzed in a conventional way
when cotunneling terms are present. We now show that

even though Î contains a composite operator, the weakness
of the tunneling matrix elements still permits us to expand
the current to leading order in the tunneling matrix ele-

ments, thereby rewriting it in terms of the full many-body
Green’s functions of the bulk. To carry out this procedure,
we write steady-state tunneling current as [18]

IðeVÞ � hÎi ¼ e

h
Re

Z d!

2�
GK

pc ð!Þ; (6)

where GK
pc ð!Þ is the Keldysh Green’s function [18] be-

tween the tip electron and c 0�. Expanding the current to
leading order in the tunneling matrix elements, we obtain
[18]: GK

pc ¼ GR
pG

K
c þGK

pG
A
c , where R, A, K denote the

retarded, the advanced, and the Keldysh Green’s functions
of the tip and the Kondo lattice. Since the tip and the lead
are in thermal equilibrium, their Keldysh Green’s functions
can be rewritten in terms of retarded and advanced Green’s
functions, using the fluctuation dissipation relations [18]
GK

p ð!Þ ¼ �2i��pð!þ eVÞhð!þ eVÞ and GK
c ð!Þ ¼

�2i��c ð!Þhð!Þ. Here hð!Þ ¼ 1� 2fð!Þ, where fð!Þ
is the Fermi distribution function, while �tipð!Þ is the local
density of states of the tip; �c ð!Þ is the ‘‘cotunneling’’

density of states of the sample given by �c ð!Þ �
1
� ImGc ð!� i�Þ; andGc ð!Þ is the retarded Green’s func-
tion of the c field, usually obtained through analytic
continuation of the Matsubara imaginary time propagator

Gc ¼ �hTc 0�ð�Þc y
0�ð0Þi.

Using these relations, the current (6) can be rewritten as

IðeVÞ¼2�e

@

Z
d!�tipð!�eVÞ�c ð!Þ½fð!�eVÞ�fð!Þ�:

(7)

In this way, the tunneling current into a Kondo lattice
probes the spectral function of the composite operator.
To illustrate the tunneling into the Kondo lattice, we now

solve for the tunneling behavior in the large-N limit [19–
23] of the Kondo lattice, where N ¼ 2jþ 1 is the spin
degeneracy of the localized f state. In this approach, the
spin operator is represented as a bilinear of pseudofermions

[24]: ~SfðjÞ ¼ fyj� ~S��fj�, where ~S�� are the generators of

the SUðNÞ symmetry group. The mean field theory pro-

vides a representation of the composite fermion ½ ~��� �
~SfðjÞ�cj� in (3) as a single fermionic operator

X
�

½ ~��� � ~SfðjÞ�cj� ! V
J
fj�; (8)

where the amplitude V
J ¼ �hfyj�cj�i. In this way, the

large-N mean field theory captures the formation of a
composite f electron, an essential element of the Kondo
effect. In terms of pseudofermions, we can rewrite single
particle operator in (3) as

c j� ¼ tccj� þ ~tffj�; (9)

where the complex amplitude for tunneling into the com-

posite fermion state is ~tf ¼ V
J tf.
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The requirement that the number of pseudofermions at
any given site should be equal to N=2 introduces a con-
straint 	, to be determined self-consistently together with
the hybridization amplitude V (see, e.g., [21,25]). The
resulting mean field Hamiltonian can then be diagonalized
by means of the Bogoliubov transformation ck� ¼
vkak� þ ukbk�, and fk� ¼ ukak� � vkbk�, where uk
and vk are the Kondo lattice coherence factors given by

u2k ¼ ½Rk þ ð"k � 	Þ�=2Rk, v2
k ¼ 1� u2k with Rk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð"k � 	Þ2 þ 4V 2
q

. The Hamiltonian (1) in the mean field

approximation then becomes HðmfÞ
KL ¼ P

k�ð!�
k a

y
k�ak� þ

!þ
k b

y
k�bk�Þ, where !�

k ¼ ð"k þ 	� RkÞ=2 is the quasi-
particle dispersion in the newly developed heavy Fermi
liquid. The mean field tunneling Hamiltonian then be-
comes

Ĥ ðmfÞ
T ¼ X

j�

py
j�½tccj� þ ~tffj�� þ H:c: (10)

Although our mean field Hamiltonian has the form of the
Anderson lattice model with U ¼ 0, the states on which it
operates have an underlying composite structure, formed
when local spins hybridize with conduction electrons.
Thus, the Hamiltonian (11) provides a mean field descrip-
tion of the tunneling into the conduction band together with
the cotunneling processes involving local moments.

It is instructive to contrast the tunneling conductance
expected in a Kondo lattice with that of a single Kondo
impurity. Using the tunneling Hamiltonian (11), we com-
pute Gc ð!Þ. In the case of a single Kondo impurity, we

obtain

Gimp
c ð!Þ ¼ ðtci��V þ ~tfÞ2

!� 	� i�
þ t2ci��; (11)

where � is the density of states of the conduction electrons,
� ¼ ��V 2 ’ TK is the width of the Kondo resonance.
The differential conductance dI

dV � gðeVÞ is

gimpðeVÞ ¼ N
2�e2

@
t2c�tip�

jqþ �0j2
1þ �02

j�0¼ðeV�	Þ=�; (12)

where N is the spin degeneracy and q ¼ AðeVÞ=BðeVÞ is
the ratio of two complex tunneling amplitudes, where
AðeVÞ ¼ ~tf þ tcVPð 1

eV��k
Þ describes the cotunneling

into the atomic orbital and BðeVÞ ¼ tcV��ðeV � �kÞ
describes direct tunneling into the metal [26]. Here �0 ¼
ðeV � 	Þ=�, �tip is the density of states at the Fermi level

of electrons in the tip. For a broad flat band, A ¼ ~tf, B ¼
tcV��, and q ¼ ~tf=ðtcV��Þ.

Now we turn to the case of the Kondo lattice. Within the
large-N mean field theory, we obtain

GKL
c ð!Þ ¼ N

X
k

ðtc þ ~tf
V

!�	Þ2
!� �k � V 2

!�	

; (13)

where �k is the dispersion of the conduction band. We
obtain the following expression for the differential tunnel-
ing conductance,

gðeVÞ ¼ N
2�e2

@
t2c�tip

X
s¼�;k

jqþ Eskj2
1þ E2

sk

�ðeV �!skÞ;

(14)

where Esk ¼ ð!sk � 	Þ=�. The prefactor of the
delta function has a characteristic Fano functional form
[27,28]. This form introduces an asymmetry in the result-
ing voltage dependence of the tunneling conductance
gðeVÞ. The momentum summation in GKL

c ð!Þ (13) and

gðeVÞ (14) can be carried out analytically assuming a
constant conduction electron density of states � to give

gðeVÞ ¼ N

�
2�e2

@

�
t2c�tip�

1

�
Im ~GKL

c ðeV � i�Þ; (15)

where

~G KL
c ð!Þ ¼

�
1þ q�

!� 	

�
2
ln

�
!þD1 � V 2

!�	

!�D2 � V 2

!�	

�
þ 2D=t2c

!� 	
:

(16)

Here �D1 and D2 are the lower and the upper conduction
band edges, respectively, and 2D ¼ D1 þD2 is the band-
width. The differential tunneling conductance predicted by
this formula has two well-pronounced peaks at eV � 	
separated by a narrow hybridization gap �g � 2V 2=D in

the single particle spectrum, as shown in Fig. 2.
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FIG. 2 (color online). Differential tunneling conductance gðVÞ
for a single Kondo impurity case given by (12), a Kondo lattice
given by (15). A typical Fano shape in the single Kondo impurity
case gets replaced with a double-peaked resonance line in the
Kondo lattice case. The dashed lines illustrate the effect of
disorder, which destroys the coherence, closing the gap in the
density of states curve. Here ~tf=tc ¼ 0:2, q ¼ 4:9, 	=TK ¼ 0:3,

while D ¼ 100TK.
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In practice, experimental tunneling results will be modi-
fied by the effects of disorder [20]. A phenomenological
quasiparticle elastic relaxation rate � may be introduced
into the theory by replacing ! ! !� i� in (13). The
results of this procedure are shown in Fig. 2. As we see,
disorder removes the sharp peak structure in the tunneling
conductance gðeVÞ (15). The resulting line shape of the
tunneling conductance dI=dVðeVÞ is an asymmetric
smooth curve.

The current work can be extended in a number of
interesting directions. One important aspect is to examine
the effects of cotunneling on the fluctuations in the density
of states probed in Fourier transform STM experiments. In
one-band systems, the Fourier transform of these fluctua-
tions is phase sensitive to quasiparticle scattering [4,29],
and is expected to be an important probe of both the
quasiparticle dispersion and the phase of the cotunneling
matrix elements.

A particularly fascinating aspect of cotunneling is its
likely interplay with various forms of heavy-fermion order,
such as heavy-fermion superconductivity. Unlike in con-
ventional tunneling, the quasiparticle matrix elements of
the composite operators associated with cotunneling are
expected to be sensitive to the nature of the heavy-electron
ground state. For example, recent work has proposed that
heavy-electron superconductivity may involve compos-
ite pairing between local moments and electron pairs
[25]. A key feature of composite pairing is the presence
of two conduction screening channels �1 and �2, so that
now the tunneling will be described by the c field (3) of
the form

c 0� ¼ tcc0� þX2
i¼1

ftf�i
½ ~��� � ~Sfð0Þ�c�i�g;

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{uf�þv sgnð�Þfy��

(17)

where v describes hybridization in the particle-particle
channel. In this way, we see that the cotunneling term in
c may develop both particle and hole components, result-
ing in Andreev reflection even in the limit of weak
tunneling.

In conclusion, we have studied electron tunneling into a
Kondo lattice of localized moments, bringing out the im-
portance of cotunneling as a primary mechanism of tun-
neling into the heavy-electron fluid. We have expressed the
conductance in terms of a spectral function of a cotunnel-
ing composite operator, illustrating the result by a cal-
culation carried out in the large-N limit. Our results
predict that in a clean system the differential tunneling
conductance will display two peaks separated by the hy-
bridization gap. Addition of disorder leads to the smearing
of the gap and produces a Fano-like smooth asymmetric
line shape.
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