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The square and kagome lattices with nearest-neighbor springs of spring constant k are isostatic with a

number of zero-frequency modes that scale with their perimeter. We analytically study the approach to this

isostatic limit as the spring constant k0 for next-nearest-neighbor bonds vanishes. We identify a character-

istic frequency !� � ffiffiffiffi

k0
p

and length l� � ffiffiffiffiffiffiffiffiffi

k=k0
p

for both lattices. The shear modulus C44 ¼ k0 of the
square lattice vanishes with k0, but that for the kagome lattice does not.
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An argument advanced by Maxwell [1] states that rigid
assemblies of loose particles must have at least Ziso ¼ 2nf
contacts per particle, where nf is the number of relevant

degrees of freedom per particle. This result has been ap-
plied to many systems [2,3], including network glasses
[4,5], rigidity percolation [6,7], �-cristobalite [8], granular
media [9,10], protein folding [11], and elasticity in net-
works of semiflexible polymers [12].

Zero-temperature packings of particles can exhibit tran-
sitions with increasing particle density from an unjammed,
disordered state with no interparticle contacts to a jammed,
disordered state with an average of Zc contacts per particle.
These transitions are discontinuous because the coordina-
tion number Zc must satisfy Maxwell’s inequality. For the
special case of frictionless spheres, the coordination num-
ber at the jamming transition, Zc, appears to be exactly the
minimal, or isostatic, value needed for mechanical stabil-
ity, Ziso [13–15]. The coincidence of the jamming transi-
tion with the threshold for mechanical stability gives rise to
special properties at the transition: the coordination num-
ber Z jumps discontinuously but as the transition is ap-
proached from the high-density side, the shear modulus
vanishes and length and time scales diverge as power laws
[13–16]. In addition, the vibrational properties just above
the transition are very different from those of typical solids
[3,16–19].

The behavior of the isostatic jamming transition invites
comparison to second-order structural transitions, in which
the vanishing of an elastic constant in an isostatic lattice
signals the instability towards a shape distortion. Jamming
involves a transition between two disordered states, while
critical structural transitions involve a crystalline state.
This raises the question of which aspects of the jamming
transition apply to all systems, periodic or disordered, near
isostatic transitions and which do not. To answer these
questions, it is important to study models for which results
can be rigorously established via analytic calculations. In
this Letter, we test the robustness of the connection be-
tween isostaticity, power-law elastic moduli and vibra-
tional properties by an exact analytical exploration of the
approach to the threshold of mechanical stability in fully
periodic, nearly isostatic systems. Specifically, we study

two lattices, the 2D square and kagome lattices, shown in
Fig. 1, with nearest-neighbor (NN) harmonic springs of
spring constant k and next-nearest-neighbor (NNN) har-
monic springs with spring constant k0. The isostatic struc-
tural transition is then approached continuously as k0 ! 0
since both systems are isostatic there with Zc ¼ 4. To
describe the phase that results when k0 < 0, it is necessary
to add a nonlinear term gx4 to the energy [20].
Our principal results are that in both the square and

kagome lattices, there is a characteristic frequency !� �
ffiffiffiffi

k0
p

and a length l� � ffiffiffiffiffiffiffiffiffi

k=k0
p

that follow directly form the
form of the wave-number- and frequency-dependent re-
sponse function but that can also be obtained from cutting
arguments [3,16]. However, the shear modulus exponent is
different in the three systems, showing that isostaticity
does not confer universality on all power-law properties
near the transition.
It is useful first to understand the two states that straddle

the structural transition. Above the transition, where k0 >
0, the square or kagome lattice is stable. Below the tran-
sition, where k0 < 0 (and g > 0), theN0 zero modes at k0 ¼
0 develop positive or negative amplitudes, and there are
�aN0 , where a > 1, distinct ground states. In this paper, we
will restrict our attention to the case k0 � 0, and we will
use the harmonic approximation.
Now consider the square lattice shown in Fig. 1(a) with

NNN nonlinear springs. This lattice has N ¼ NxNy sites

FIG. 1 (color online). (a) Square and (b) kagome lattices with
NN springs of spring constant k and NNN springs of spring
constant k0. White circles in (a) and white triangles in (b) show a
zero-energy distortion.
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and Nnn ¼ 2NxNy � Nx � Ny nearest-neighbor bonds.

Thus when k0 ¼ 0, this system is isostatic with a number
of zero-frequency modes, N0 ¼ 2N � Nnn ¼ Nx þ Ny,

equal to half the perimeter of the system. When k0 > 0,
these modes become quasi-isostatic with nonzero frequen-
cies that vanish as k0 ! 0. The components of the dynami-
cal matrix are easily calculated [21]

DxxðqÞ ¼ Dyyðqy; qxÞ
¼ 4ksin2ðqx=2Þ þ 4k0sin2ðqy=2Þ þ 4k0sin2ðqx=2Þ

� 8k0sin2ðqx=2Þsin2ðqy=2Þ;
DxyðqÞ ¼ DyxðqÞ ¼ 2k0 sinðqxÞ sinðqyÞ; (1)

where we set the lattice constant a equal to 1. In the
continuum limit q � 1, DijðqÞ obtains the form dictated

by elasticity theory with elastic constants C11 ¼ Cxxxx ¼
Cyyyy, C12 ¼ Cxxyy, and C44 ¼ Cxyxy: [21]

DxxðqÞ ¼ C11q
2
x þ C44q

2
y; DyyðqÞ ¼ C11q

2
y þ C44q

2
x;

DxyðqÞ ¼ ðC12 þ C44Þqxqy; (2)

and we can relate k and k0 to the elastic constants: C11 ¼
kþ k0, C44 ¼ C12 ¼ k0. Thus, the shear modulus vanishes
as k0 ! 0. When k0 ¼ 0, DijðqÞ breaks up into two inde-

pendent one-dimensional compressional phonon systems:
it is diagonal with DxxðqÞ ¼ 4ksin2ðqx=2Þ independent of
qy and DyyðqÞ ¼ 4k0sin2ðqy=2Þ independent of qx. Thus at
qx ¼ 0,DxxðqÞ vanishes for all points along the line��<

qy < �. Note that at a standard structural phase transition,

components of DijðqÞ vanish at one or possibly a discrete

set of points in the Brillouin Zone (BZ) when an elastic
modulus vanishes. In contrast, for the periodic isostatic
system, components of DijðqÞ vanish along lines.

The one-dimensional nature of DijðqÞ gives rise to

compressional phonons with frequencies !x;yðqÞ ¼
2

ffiffiffiffi

k0
p j sinqx;y=2j [Fig. 2(a)] and a one-dimensional density

of states �ð!Þð2=�Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k�!2
p

with a nonzero value �0 ¼
ð� ffiffiffi

k
p Þ�1 at ! ¼ 0 as shown in Fig. 3(a).
When k0 > 0, modes exhibit a cos4� modulation at low

frequency and one-dimensional isostatic behavior at larger

q [Fig. 2(b)]. When 0< k0 � k, DijðqÞ is well approxi-

mated as a diagonal matrix with DxxðqÞ ¼ kq2x þ
4k0sin2ðqy=2Þ with associated eigenfrequency !xðqÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DxxðqÞ
p

. These expressions immediately define a charac-
teristic frequency

!� ¼ 2
ffiffiffiffi

k0
p

(3)

as the frequency at the point M ¼ ð0; �Þ on the BZ edge.
The first term in DxxðqÞ represents the long-wavelength
anomalous isostatic (iso)modes that are present when k0 ¼
0, whereas the second represents the effects of NNN cou-
pling. When qx ¼ 0, the only length scale in the problem is
the unit lattice spacing, and no divergent length scale can
be extracted from Dxxð0; qyÞ as it can be in the case of the

structural phase transition. When the first term is large
compared to the second, DxxðqÞ reduces to its form for
the isostatic k0 ¼ 0 limit, and we can extract a length by
comparing these two terms. The shortest length we can
extract comes from comparing kq2x toDxxðqÞ at pointM on
the zone edge, i.e.,

l� ¼ ð1=2Þ ffiffiffiffiffiffiffiffiffi

k=k0
p � 1=q�: (4)

If qy < �, the isostatic limit is reached when qx > q�. A
similar analysis applies to DyyðqÞ when qy > q�. If a

square of length l is cut from the bulk, the wave numbers
of its excitations will be greater than �=l, and for ql� > 1,
all modes within the box will be effectively isostatic ones.
This construction is equivalent to the cutting argument of
Wyart et al. [3,22].
Equation (4) is identical to the length at which the

frequency of the compressional mode !xðqx; 0Þ ¼
ffiffiffi

k
p

=l� � ffiffiffiffiffiffiffiffi

C11

p
=l� becomes equal to !�. A meaningful

length from the transverse mode !xð0; qyÞ cannot be ex-

tracted in a similar fashion. The full phonon spectrum
[Fig. 3(a)] exhibits acoustic phonons identical to those of
a standard square lattice at q � 1 and a saddle point at the
point M. Thus, the low-frequency density of states is

Debye-like: �ð!Þ ¼ ð!=ð2�ÞÞ= ffiffiffiffiffiffiffi

kk0
p

with a denominator
that, because of the anisotropy of the square lattice, is pro-
portional to the geometric mean of longitudinal and trans-

FIG. 2 (color online). (a) !xðqÞ when k0 ¼ 0 showing the line
of zero energy at qx ¼ 0 and one-dimensional dispersion as a
function of qx at fixed qy. (b) Density plot of the low-energy

phonon mode when k0 ¼ 0:02k showing cos4� modulation at
small q and one-dimensional isostatic behavior at large q.

FIG. 3 (color online). Density of states as a function of � ¼
!=!� for (a) the square and (b) kagome lattices, showing their
constant value when k0 ¼ 0 (dashed green line) and van Hove
singularities, from the saddle at S and minima atM and �, whose

frequencies all scale as !� / ffiffiffiffi

k0
p

when k0 > 0.
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verse sound velocities rather than to a single velocity. In
addition �ð!Þ exhibits a logarithmic van Hove singularity
at !� and approaches the one-dimensional limit ð1=�Þ=
ffiffiffi

k
p

at !� � ! � 2
ffiffiffi

k
p

. The frequency !� [Eq. (3)] is
recovered by equating the low-frequency Debye form at
!� to the high-frequency isostatic form of the density of
states.

The kagome lattice can be viewed as an array of one-
dimensional staggered linear rows, parallel to the x axis, of
pairs of opposing triangles as shown in Fig. 1. Identical
arrays with rows parallel to ( cos2�=3, � sin2�=3) can be
identified. As in the square lattice, each site has 2d ¼ 4
nearest neighbors in the bulk. A counting procedure similar
to that used for the square lattice yields N0 proportional to

the
ffiffiffiffi

N
p

for lattice of N sites.
The isostatic (iso) modes correspond to identical rota-

tions about their top vertices of all of the ‘‘up’’ pointing
triangles in any row in the horizontal (or symmetry-
equivalent) grid. These rotations require counterrotations
of connected ‘‘down’’ pointing triangles as shown in
Fig. 1(b). There are three sites per unit cell (which we
take to be those in the up triangles) in the kagome lattice
and six phonon branches [Fig. 4(a)]. Three of these are
high-energy optical branches, two are acoustic and one is
isostatic. The zero modes of the latter show up as three
lines of zero frequency along qx ¼ 0 [� ¼ ð0; 0Þ to M ¼
ð0; G0=2Þ, where G0 ¼ 4�=

ffiffiffi

3
p

, in the BZ] and the two
symmetry-related lines as shown in Fig. 5(a). Away from
qx ¼ 0, the isostatic mode frequency is !IðqÞ ¼ cxqx,

where cx ¼
ffiffiffiffiffi

3k
p

=4 for small qx. This behavior is identical
to that of the square lattice. The resulting density of states

decreases linearly with ! from a nonzero value �0 ¼
3G0=ð4�2cxÞ ¼ 8=ð� ffiffiffi

k
p Þ at ! ¼ 0. The total low-

frequency density of states from the two acoustic modes
and the isostatic mode is independent of ! and equal to �0

at small ! [Fig. 3(b)].
When springs of spring constant k0 are added to the NNN

bonds shown in Fig. 1(b), the quasi-isostatic mode along

qx ¼ 0 [Fig. 4(b)] has nonzero frequency of order
ffiffiffiffi

k0
p

for

all qy > 0 and gives rise to various lengths of order l� �

ffiffiffiffiffiffiffiffiffi

k=k0
p

. At qx ¼ 0 and low values of qy, this mode hybrid-

izes with the transverse phonon mode to produce a gapped
translation-rotation mode with frequency

!� ¼
ffiffiffiffiffiffiffi

6k0
p

(5)

at q ¼ 0. At small q, there are isotropic longitudinal and

transverse sound modes with respective velocities cL ¼
ffiffiffiffiffi

3k
p

=4 and cT ¼ ffiffiffi

k
p

=4. The lowest frequency mode after
hybridization at qx ¼ 0 is a transverse phonon near qy ¼ 0

and predominantly an isostatic rotation mode at qy > q�H,
where q�H ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffi

3k0=k
p � 1=l�H can be termed a hybridiza-

tion wave number. This mode reaches a maximum fre-

quency !�
S ¼ !�=

ffiffiffi

2
p

at a saddle point at

qy ¼ QS ¼ 4ð3k0=2kÞ1=4 � ðl�Þ�1=2 and a local minimum

with frequency!�
M ¼ !�=

ffiffiffi

3
p

at the zone-edge pointM. At
low frequency, the DOS is Debye-like: �ð!Þ ¼ ð!=2�Þ�
ðc�2

L þ c�2
T Þ ¼ 32!=ð2�kÞ. The points M, � and S ¼

ð0; QSÞ give rise to van Hove singularities in the DOS.

The minimum point M produces a jump ��M ¼
8

ffiffiffi

2
p

=�
ffiffiffi

k
p

> �0 at !�
M, the saddle S produces a logarith-

mic singularity at !�
S, and the minimum at � a jump

��� ¼ ð16=�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k0=2k
p � �0, which is just visible in

Fig. 3(b).

Lengths that scale as
ffiffiffiffiffiffiffiffiffi

k=k0
p

can be introduced in much
the same way as in the square lattice. The square of the
low-frequency isostatic-shear mode at qx ¼ 0 increases as

c2xq
2
x for nonzero shear, and lengths l�S ¼ ð1=4Þ ffiffiffiffiffiffiffiffiffi

k=k0
p

and

l�M ¼ ð ffiffiffi

6
p

=8Þ ffiffiffiffiffiffiffiffiffi

k=k0
p

follow from comparing cxqx to !
�
S and

!�
M, respectively. These two lengths are longer than the

hybridization length, l�H. Thus, it is only at length scales
less than l�H that isostatic modes are retrieved completely,
and we should take

l� ¼ l�H ¼ ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=ð3k0Þ
p

: (6)

The less divergent length �S ¼ Q�1
S � ffiffiffiffi

l�
p

determines the

position of the saddle S and does not describe the same
physics as the other lengths.
The long-wavelength, low-frequency properties of the

kagome lattice are best understood by considering the
effective low-energy dynamical matrix ~Dij obtained by

integrating out the high-energy modes. This matrix is con-

FIG. 4 (color online). (a) Phonon dispersion along symmetry
directions. The dotted lines are for k0 ¼ 0 and the solid lines are
for k0 ¼ 0:02. The isostatic and quasi-isostatic branches are in
red. (b) shows isostatic and shear modes along �M and indicates
characteristic frequencies and wave-numbers.

Γ

ω

FIG. 5 (color online). (a) Plot of iso mode at k0 ¼ 0. (b) den-
sity plot of iso mode at k0 ¼ 0:02k. Inset: circular symmetry at
origin.
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veniently represented in a basis consisting of the longitu-
dinal (L) and transverse (T) phonons and the mixed
rotation-translation gapped mode (�) at q: ~DLT ¼ ~DTL ¼
0, and components are

~DLL ¼ 3kq2=16; ~DTT ¼ kq2=16;

~D�� ¼ 6k0 þ kq2=16 ~DL� ¼ ~D�
�L ¼ kq2 cosð3�Þ=16

~DT� ¼ ~D�
�T ¼ �ið ffiffiffi

3
p

=2Þk0qþ kq2 sinð3�Þ=16; (7)

where � is the angle that q makes with the x axis. When
k0 ¼ 0, the transverse phonon and rotation-translation
mode mix at qx ¼ 0 (� ¼ �=2) to produce the zero iso-

static rotation mode and a sound mode with ! ¼ ffiffiffiffiffiffiffiffi

k=8
p

qy.

In addition, there is the longitudinal mode with ! ¼
ð ffiffiffiffiffi

3k
p

=4Þqy. When k0 � 0, the off-diagonal terms can be

ignored to lowest order in q, leading to longitudinal and

transverse sound modes with respective velocities cL ¼
ffiffiffiffi

B
p

and cT ¼ ffiffiffiffi

G
p

, arising from bulk and shear moduli B ¼
3k=16 and G ¼ k=16. Note that the shear modulus is
proportional to k; this is in contrast to the square lattice
where G / k0. To understand how this comes about, it is
instructive to look at the TT component of the phonon
susceptibility,

�TTðq;�Þ¼D�1
TT ðq;�Þ¼

16

kq2
6þðql�Þ2ð3�cos23�Þ
6þ2ðql�Þ2cos23� : (8)

When ql� � 1, this reduces to the required isotropic form
1=ðGq2Þ. When ql� 	 1, �TT is anisotropic with value
1=ðGq2Þ for cos3� ¼ 1 and 1=ð6k0Þ for cos3� ¼ 0.

We can now compare the properties of nearly isostatic
lattices with those of disordered sphere packings.
Marginally-jammed packings with volume fraction � �
�c þ ��, just above the volume fraction �c at the jam-
ming threshold, have an average number of contacts per

sphere z � zc þ �z, where zc ¼ 2d, and �z� ð��Þ1=2
[13,15]. They are macroscopically isotropic with bulk
and shear moduli that for harmonic interparticle potentials
scale, respectively, as B� ð�zÞ0 and G� ð�zÞ1 [13,15].
The longitudinal and transverse sound velocities then scale

as cL � ð�zÞ0 and cT � ð�zÞ1=2. The density of states has a
plateau above a frequency !� [15,16]. A length scale l� �
1=�z can be extracted by equating cL=l

� to !� [16], or
from the response to a point perturbation [23]. This scaling
emerges from the cutting arguments of Refs. [3,17]. A

second length l�T � ð�zÞ�1=2 can be defined from cT=l
�
T ¼

!� [16] and is important for energy transport [19].

The most robust features are the scalings of !� � ffiffiffiffi

k0
p

and l� � 1=
ffiffiffiffi

k0
p

in both the square and kagome lattices.
Effective medium calculations [24] for these lattices with
NNN bonds added with probability P��z yield k0 �
ð�zÞ2; this correspondence yields the observed scalings
of !� and l� for marginally-jammed systems. These scal-
ings are likely to be robust for all nearly-isostatic systems.
However, the power-law scaling of the shear modulus is
not universal (Table I). The shear moduli of marginally-
jammed systems and the square lattice both vanish with�z
(with different powers), but G of the kagome lattice is
proportional to k and does not vanish. Thus, different
isostatic transitions can fall into different universality
classes. This conclusion is consistent with recent numeri-
cal results for disordered systems near isostaticity, which
show different scalings of bulk moduli [25].
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TABLE I. Frequencies, lengths, and elastic moduli in square
and kagome lattices and the marginally jammed (MJ) state of
disordered sphere packings. !�, l� and B scale the same way in
all lattices if we take k0 � ð�zÞ2, but G does not.

Quantity Square Kagome MJ

l� ðkk0Þ1=2 ð kk0Þ1=2 ð�zÞ�1

!� ðk0Þ1=2 ðk0Þ1=2 ð�zÞ1
G k0 k ð�zÞ1
B k k ð�zÞ0
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