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It is shown that a homogeneous two-component Fermi gas with (long-range) dipolar and short-range

isotropic interactions has a ferronematic phase for suitable values of the dipolar and short-range coupling

constants. The ferronematic phase is characterized by having a nonzero magnetization and long-range

orientational uniaxial order. The Fermi surface of the spin-up (-down) component is elongated (com-

pressed) along the direction of the magnetization.
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Cold dipolar Fermi gases have attracted much attention
due to the novel anisotropic and long-range character of
dipole-dipole interactions. Recent studies of many-body
effects predicted an elongated Fermi surface (FS) in a one-
component fully polarized Fermi gas with dipolar interac-
tions along the polarization direction established by an
external field [1,2]. A biaxial state with a critical value of
the effective coupling constant �d ¼ n�2=�F was pro-
posed in Ref. [3] (� is the dipole moment of the fermion,
n is the total density and �F is the Fermi energy of the free
Fermi gas at the same density). It was found [3] that the
system will exhibit violations of the Landau theory of the
Fermi liquid both at quantum criticality and in the biaxial
phase. More generally, understanding anisotropic non-
Fermi liquid phases of cold atomic systems may shed light
into the quantum liquid crystal phases in strongly corre-
lated systems and high Tc superconductors [4–6].

The question we want to address here is whether a cold
spin-1=2 Fermi gas with long-range dipolar interactions
can become spontaneously polarized and what is the nature
of the broken symmetry state. The theory we present here
is a generalization of the theory of the Stoner (ferromag-
netic) transition in metals [7] to take into account the
effects of the long-range and anisotropic dipolar interac-
tion [8]. As we will see below, much as in the theory of
Stoner ferromagnetism, the polarized state can occur only
for sufficiently large values of the magnetic dipole moment
and/or of the spin-flip scattering rate. However, unlike
what happens in Stoner ferromagnetism, as a result of the
structure of the dipolar interactions, the resulting polarized
state is also spatially anisotropic, a ferronematic state.

The classical version of this problem has been consid-
ered in mixtures of ferromagnetic particles with nematic
liquid crystals [10], and in dipolar colloidal fluids and
ferrofluids [11]. Classical dipolar fluids have complex
phase diagrams, typically featuring inhomogeneous phases
with complex spatial structures. Much less is known about
their quantum counterparts. In the case of simple quantum
fluids, such as 3He, the dipolar interaction plays a small
role compared to the short-range exchange interaction
[12]. In the context of ultracold gases, a number of atomic
and molecular systems with strong dipolar interactions,

such as Dy, have been the focus of recent experiments
(see Ref. [13]).
Consider a restricted Hilbert space of two hyperfine

states, called 1 (‘‘spin-up’’) and 2 (‘‘spin-down’’), of a
pointlike magnetic atom of mass m and magnetic moment,
M, with componentsMi ¼ ��i (i ¼ 1, 2, 3) and ~� are the
usual spin-1=2 Pauli matrices (the factor of @=2 is absorbed
in the definition of �). The Hamiltonian is

Ĥ ¼
Z

d3xc y
�ðxÞ

�
� @

2r2

2m

�
c �ðxÞ

þ 1

2

Z
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� c �0 ðxÞ; (1)

where the fields c �ðxÞ destroy fermions on spin state with
z component� ¼ 1, 2 at position x. We consider the model
interaction is of the form

U0ðx;x0Þ��0;��0 ¼ �2

r3
�i

��0 ð�ij � 3r̂ir̂jÞ�j
��0

þ g���0���0�ðrÞ; (2)

where r � ðx� x0Þ=jx� x0j and r̂ is a unit vector in the
direction of r. The last (ultralocal) term represents the
short-range isotropic (contact) interactions. It only affects
the spin-triplet channel and we denote by g the associated
coupling constant. The Fourier transform of the bare two

body interaction is ð4��2=3Þ�i
��0 ð3q̂iq̂j � �ijÞ�j

��0 þ
g���0���0 . The Hamiltonian is invariant under simulta-

neous SUð2Þ transformations in spin space and SOð3Þ
rotations in real space. This mixing of orbital and spin
degrees of freedom is, in essence, what relates the distor-
tions of the shape of FS and the spin polarization.
The ferronematic state breaks simultaneously the rota-

tional invariance in spin space and in real space of the
Hamiltonian, and its order parameters reflect this pattern of
symmetry breaking. The order parameters are (a) the local
magnetization vector Ma (a ¼ x, y, z) that measures the
spin polarization, and (b) the nematic order parameter, a
3� 3 symmetric traceless matrix, Qij (i, j ¼ x, y, z) that

measures the breaking of rotational invariance in space,
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and (c) the generalized ‘‘nematic-spin-nematic’’ order pa-
rameter Qab

ij , a tensor symmetric and traceless on the

spatial (i, j ¼ x, y, z) and spin (a, b ¼ x, y, z) components,
that measures the breaking of both symmetries [14].
General order parameters of the latter (nematic-spin-
nematic) type were considered by Wu et al. [16] who
gave a detailed description in 2D systems and partially in
3D systems. The ferronematic state has an unbroken uni-
axial symmetry in real space. It is a 3D generalization of
the quadrupolar � phase of Ref. [16].

An intuitive way to describe these phases (and their
order parameters) in a Fermi system is in terms of sponta-
neously deformed Fermi surfaces [3,5,16]. A ferromag-
netic state is isotropic in real space and has a spherical
FS of unequal size for both spin polarizations. The nematic
phase is isotropic in spin space, and its FS has a uniaxial
distortion in real space, with the up and down spin FS being
identical in shape and size. For small values of the order
parameter, the distorted FS are ellipsoids with an eccen-
tricity determined by the magnitude of the order parameter
Qij. Because of the mixing of orbital and spin degrees of

freedom by the dipolar interaction, ferromagnetism causes
the FS to distort, thus driving the system into an uniaxial
nematic state. Since the state is ferromagnetic, the up
(down) FS is a prolate (oblate) revolution ellipsoid. Both
FS are collinear, and have unequal distortion and volume.
Hence, the nematic-spin-nematic order parameter Qab

ij has

a finite value. We find that all three orders are present even
for arbitrary small values of the dipolar coupling, where the
ferromagnetic is the strongest, the nematic intermediate,
and the nematic-spin nematic the weakest.

In this Letter we use a Hartree-Fock (HF) variational
wave function to determine the phase diagram as a function
of the density n, the (dimensionless) dipolar coupling
constant �d and of the (dimensionless) local exchange
coupling �s ¼ gn=�F. We consider an infinite system
and significant finite size effects, such as the trap potential
and the associated inhomogeneity of the gas, are not con-
sidered but can be included using the Thomas-Fermi ap-
proximation. We find two phases: (a) an isotropic
unpolarized state and (b) a ferronematic phase. As in the
conventional theory of the Stoner transition, we find that
the values of �s and �d on the phase boundary are of order
unity. In this regime, a HF wave function can only yield
qualitative results, such as the broad structure of the phase
diagram, but its is not expected to be quantitatively accu-
rate. Even within mean field theory, HF may miss impor-
tant physics; a recent study [17] found that to second order
in g the usual continuous Stoner phase transition can turn
first order.

We take a variational HF wave function of the form of a
Slater determinant describing a state in which the spin up
and down Fermi surfaces are spontaneously deformed
away from their noninteracting spherical shape. We will
not consider other interesting states with more complex
order, such as biaxial [3] and its generalizations. Since we

are interested in magnetism we allow for the volume of the
up and down Fermi surfaces to change as well. This results
in a (‘‘Thomas-Fermi’’ like) distribution function of fer-
mions in momentum space with 4 variational parameters,
kF1, kF2 �1 and �2. We keep the total particle density n ¼
n1 þ n2 fixed, [1,2]

n�k ¼ �ðk2F� � ��1
� ðk2x þ k2yÞ � �2

�k
2
zÞ; (3)

where �ðxÞ is the step function and � ¼ 1, 2. If �� ¼ 1
both FS’s are spheres. Equation (3) has the property that
V�1

P
kn�k ¼ k3F�=ð6�2Þ � n�; the total density does not

depend on the FS distortion parameters ��, with �� > 1
(oblate), �� < 1 (prolate).
Computing the energy in HF we obtain an expression for

the ground state energy density in terms of the distribution

functions of spin up and down particles n�;k ¼ hcy�kc�ki,
and

P
kn�;k ¼ N�,

Eint ¼ gn1n2 þ 2��2

3V2

X
k;k0

ð1� 3cos2	k�k0 Þ

� ðn1k0n1k � 2n1k0n2k þ n2k0n2kÞ; (4)

where 	k�k0 labels the direction of k� k0 with respect to
the z axis. Eint is a function of the magnetization M �
ðn1 � n2Þ=n, the density n, and the ratio of the undistorted
Fermi surface volumes is r3 ¼ k3F1=k

3
F2 ¼ ð1þMÞ=ð1�

MÞ. The total energy density E is

Ekin ¼ C1@
2

3m

�
n5=31

�
2�1 þ 1

�2
1

�
þ n5=32

�
2�2 þ 1

�2
2

��

Eint ¼ gn1n2 � ��2

3
½n21Ið�1Þ � 2n1n2Ið�1; �2;MÞ

þ n22Ið�2Þ�; (5)

where C1 ¼ ð3=10Þð6�2Þ2=3. The integrals Ið�Þ and
Ið�1; �2;MÞ are given by
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FIG. 1 (color online). Schematic phase diagram as a function
of �s ¼ gn=�F and �d ¼ n�2=�F. It has a paramagnetic phase
(M ¼ 0), and a ferronematic phase with partial (0<M< 1) and
full polarization (M ¼ 1). Dashed (full) curve: first (second)
order phase transitions; A: tricritical point.
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Ið�Þ ¼ �2� 6
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� 3 arccos�3=2

ð��1 � �2Þ3=2 ; (6)
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The total energy E becomes

E
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¼ 1
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where E0 ¼ ð2C1@
2n5=3Þ=ð25=3mÞ. Numerically minimiz-

ing the energy we obtain the phase diagram in the cou-
plings �s and �d of Fig. 1.

The phase diagram shown in Fig. 1 exhibits a ferrone-
matic phase and a paramagnetic phase, separated by a
phase boundary consisting of a line of 1st order transitions
that meets a line of continuous transitions at a tricritical
point (labeled by A.) As expected the ferronematic state
becomes more accessible as the s-wave coupling increases.
This phase is fully polarized (M ¼ 1) for most of the phase
diagram, except for a small region where the polarization is
partial, 0<M< 1. In the ferronematic phase with partial
polarization the up and down Fermi surfaces are unequally
distorted, while in the fully polarized regime only one
distorted up FS exists. Partial magnetization in the conven-

tional Stoner transition occurs for �d ¼ 0 and 4=3< �s <

22=3, where the up and down FS become distorted even for
arbitrarily small values of the dipolar coupling (see Fig. 2.)
From the structure of the free energy for small values of
Q1 ¼ �1 � 1, Q2 ¼ �2 � 1 and M (valid in the vicinity
of the continuous transition) we see that the dipolar inter-
action leads to a leading term of the form MðQ1 �Q2Þ,
which is invariant under 1 $ 2. Since the ferromagnetic
state is already favored by the contact term, this term also
favors Q1 < 0 and Q2 > 0.
In the ferronematic phase the SUð2Þ spin symmetry of

the Hamiltonian is broken down to the residual Uð1Þ ffi
SOð2Þ invariance of this uniaxial state. The equilibrium FS
of the up and down spin components are shown in Fig. 3 for
several values of of the coupling constants. Both FS’s are
invariant under SOð2Þ rigid rotations about M.
The total energy, the equilibrium values of the FS dis-

tortions and the magnetization are functions of the particle
density n ¼ N=V. The pressure P ¼ �ð@E=@VÞN , chemi-
cal potential � ¼ ð@E=@NÞV and the compressibility
K�1 ¼ nð@P=@nÞ can be computed straightforwardly,
and decrease monotonically as the dipolar coupling in-
creases, see Fig. 4. The compressibility vanishes at �c

d ’
0:52 [2,18] where the Fermi gas becomes (formally) un-
stable to collapse [19].
In current experiments on cold atoms it is possible to

prepare a two-component Fermi gas out of the hyperfine
manifold of the atom. One can imagine, a two-component
dipolar Fermi gas made out of, say, the hyperfine manifold
of strongly magnetic atom such as Dy. For 163Dy with a
density of 1013 cm�3, we estimate �d ’ 0:01 [20,21]. The
recent experimental observation of itinerant (Stoner) fer-
romagnetism in ultracold gases of 6Li atoms [23] opens the
possibility to detect the ferronematic state in the laboratory
possibly by tuning the s-wave scattering amplitude.
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FIG. 2 (color online). Magnetization
M and Fermi surface distortion parame-
ters �1 and �2 vs the dimensionless
dipolar coupling �d for an s-wave cou-
pling �s ¼ 1:34.
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Depending on the strength of the dipole moment and of the
s-wave coupling, the FS for the two components may differ
considerably from the spherical shape, and free expansion
experiments may be able to provide signatures of this state.
Ferromagnetism in cold dilute systems interacting only by
s-wave contact pseudopotential has been difficult to ob-
serve as the spin states of fermions are conserved sepa-
rately on the time scales of the experiments [17]. However,
a ferronematic state can be set up experimentally in sys-
tems with a population imbalance of hyperfine states,
which may also exhibit other anisotropic and inhomoge-
neous phases. In actual experiments the trap potential is
anisotropic and weakly inhomogeneous. We estimate that
such effects do not affect our main results provided the trap
potential aspect ratios depart from 1 by perhaps up to about
30%. Nevertheless, the anisotropy acts as a weak symme-
try breaking field, that orients the ferronematic order.

In this work we have shown the existence a new phase of
matter, the ferronematic Fermi fluid, a ground state of a
dipolar Fermi gas with short-range interactions with a
spontaneous magnetization and long-range orientational
order. In this state, the up and down FS manifolds have
unequal shapes and volumes. Since rotational invariance in
real space and in spin space is simultaneously spontane-
ously broken in this state, it supports a rich spectrum of
Goldstone excitations. As a result the fluid is an optically
anisotropic medium whose properties that may be detected
by light scattering experiments.
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FIG. 4 (color online). Pressure (broken), bulk compressibility
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coupling �d, for �s ¼ 0:8. At �d � 0:3 there is a 1st order
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