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Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform pro-
filometry technique, the deformation field of the plate surface is measured simultaneously in time and space.
This enables us to compute the wave-vector-frequency (k, w) Fourier spectrum of the full space-time
deformation velocity. In the 3D (k, w) space, we show that the energy of the motion is concentrated on a
2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the
linear dispersion relation. This validates the usual wave-number-frequency change of variables used in
many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases
with the input power of the forcing, is attributed to weak nonlinear effects. Our technique opens the way
for many new extensive quantitative comparisons between theory and experiments of wave turbulence.
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Wave turbulence is a state of waves in nonlinear inter-
action as observed for a large variety of systems including
Alfvén waves in solar winds [1,2], ocean waves [3], non-
linear optics [4] and superfluids [5]. Similarly to the phe-
nomenological theory of hydrodynamic turbulence, the so-
called weak turbulence (WT) theory for wave turbulence
predicts a Kolmogorov-Zakharov energy cascade [6]. This
analytical weak turbulence theory assumes the persistence
of the space-time structure of the linear waves through the
dispersion relation. Very few experimental studies have
taken place and results show only partial agreement with
theory [7-10]. Furthermore, almost none of these experi-
ments look beyond the analysis of measurement at a single
point. Here we report the analysis of the turbulence of
bending waves on a shaken, thin elastic plate, a phenome-
non used in theatres to simulate the sound of thunder. We
are able to measure the fully resolved space-time dynamics
of the deformation of the plate and we show that the energy
is localized on a line in the wave-number-frequency plane
of the Fourier spectrum. This confirms the persistence of
the space-time structure of waves which is the premise of
weak turbulence theory. In addition, our system displays
the phenomenology described by the theory and yet some
of its predictions are not quantitatively fulfilled: the non-
linear shift to the dispersion relation and the power spec-
trum do not obey the predicted scaling laws.

The theory of WT relies on the assumption of the weak
nonlinearity of waves. The latter induces a scale separation
in the time evolution of the wave amplitude compared to
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the wave period and it provides a natural closure of the
hierarchy of cumulants derived from the wave equation
[6,11]. In contrast, no such closure can be exhibited for
hydrodynamic turbulence. In particular, the WT theory of
wave turbulence leads to a kinetic equation for the evolu-
tion of the energy spectrum of the waves. Stationary solu-
tions are exhibited which corresponds to the Rayleigh-
Jeans spectrum for systems in equilibrium and the
Kolmogorov-Zakharov energy cascade for nonequilibrium
systems. This prediction of the power spectrum density of
the wave amplitude has been derived in many cases such as
nonlinear optics, superfluids, gravity-capillary water
waves, sound waves, Alfvén waves, plasmas, oceanogra-
phy, semiconductor lasers and bending waves in elastic
plates [6,11,12]. There are a paucity of experiments spe-
cifically designed for wave turbulence and of those, most
concern surface waves on liquids [7,8]. Our wave system
consists of a thin steel plate on which elastic bending
waves are excited by an electromagnetic vibrator. The
dynamics of the plate follow the Foppl-Von Karman equa-
tions for the deformation:
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where p is the density, { the plate deformation, 4 the plate
thickness, E the Youngs modulus, o the Poisson ratio, A
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the Laplacian operator, y the stress function, and {, .} is a
bilinear differential operator [12]. Linearizing the first
equation in (1) provides the linear dispersion relation
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The nonlinear term in (1) is due to the stretching of the
plate and it is cubic in the wave amplitude. The WT theory
has recently been applied to this case [12] and predicts a
space Fourier spectrum of the amplitude of the waves

p'/3 In'/3(k* /k)
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where P is the average power input in the system from the
applied forcing, C is a number, and k* is a cutoff wave
number. The one-point spectrum of the waves has been
investigated experimentally [9,10] and has been shown not
to obey the WT prediction, in particular, in its scaling in P:
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Nevertheless, it displays a turbulentlike behavior, i.e., a
broadband spectrum, and the question is raised whether or
not the disagreement with the theory is due to strongly
nonlinear structures, to boundary condition effects, or to
some dissipative mechanism.

A sketch of the experimental setup is shown in Fig. 1(a).
The plate is made of stainless steel and its size is 2 m by
1 m and 0.4 mm thick. Its is bolted on an I beam by one
short end and is hanging under its own weight. An elec-
tromagnetic vibrator is anchored 40 cm from the bottom of
the plate and excites the waves at 30 Hz with a tunable
amplitude. The vibrator is fitted with a FGP sensor force
probe and Briiel-Kjaer accelerometer to measure the input
power P. A Fourier transform profilometry technique
[13,14] gives access to the temporal evolution of the de-
formation of the plate measured over a significant portion
of its area. The principle is the following: a sine intensity
pattern I(x, y) o sin(27ry/ p) is projected on the surface of
the plate by a video projector. The pattern is then recorded
by a Phantom v9 high speed camera. The deformation of
the plate induces a phase shift of the pattern recorded by
the camera. The deformation of the plate is recovered by a
2D phase demodulation of each image in the movie
[13,14]. Movies are recorded either with 1000 (respec-
tively 800%) pixels at 1300 (respectively 2600) frames per
seconds (fps). The configuration and the processing is
similar to that of Cobelli et al. [13] with a distance of L =
193 cm from the projector to the plate and a distance of
D = 35 cm between the optical axes. The normal velocity
of the plate is obtained by differentiating the deformation
movie in time. The field of view is about 71> cm? at
1300 fps and 62% cm? at 2600 fps. The spectra are calcu-
lated by performing a multidimensional Fourier transform
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FIG. 1 (color online). (a) Sketch of the wave turbulence ex-
periment. The specifically designed 2D mechanical system is
made of a 2 X 1 m?, 0.4 mm thick stainless steel plate held
vertically and set in motion by an electromagnetic vibrator at
30 Hz. The Fourier transform profilometry is based on the
projection of a sine intensity pattern by a high definition video
projector. The deformed image is then recorded by a high speed
camera (1300 or 2600 fps). (b) Example of measurement of the
deformation velocity on a 63 cm by 62 cm area.

without applying any windowing to preserve the localiza-
tion of the energy in the Fourier space. An example of the
normal velocity of the plate is displayed in Fig. 1.

The full space-time Fourier spectrum [shown in
Fig. 2(a)] of the deformation E(Kk, w) (a function of both
the wave vector k and the frequency w) is constructed from
the movie of the deformation velocity. The striking feature
is the localization of the energy in the vicinity of a surface
showing that the motion is a nonlinear superposition of
waves following a dispersion relation w = f(k), close to
the linear dispersion relation. This is the first experimental
observation of such a space-time spectrum in wave turbu-
lence. In addition to the full space-time spectrum, we can
analyze the space spectrum E(K), as displayed in Fig. 2(b).
The isocontours for large wave numbers are circles, reveal-
ing the isotropy of the spectrum in this regime. The aniso-
tropic response to the forcing is visible at low wave
numbers. This behavior is expected in the phenomenology
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FIG. 2 (color online). (a) Space-time spectrum E(Kk, @) of the
deformation velocity (colors are log scaled). The cuts are located
at k, = 0, k, = 0, and w = 5000 rad/s. The energy is localized
on a surface in the (k, @) space which confirms that the turbulent
motion is due to a nonlinear superposition of waves following a
dispersion relation. (b) Spectrum E(k, ) obtained from E(k, )
by integrating over the direction of k. Inset: space spectrum
E(k) computed from E(k, w) by summing over the frequencies.
Contours are log scaled in both plots.

of the Kolmogorov cascade of energy and is evidenced
here: after a few steps in the cascade, the anisotropy of
the forcing is forgotten down to the small scales at which
the dissipation is dominant. Owing to the isotropy of
the spectrum, in Fig. 2(b) we show the spectrum
E(k =||k||, ®) obtained by integrating E(k, w) over all
the directions of the wave vector. The localization of the
energy appears as a line in the (k, @) plane. The width of
this line is close to the inverse of the image size, which
indicates that the localization of the energy in our mea-
surement is actually limited by the resolution of the Fourier
transform due to the finite size of the plate. At low fre-
quency, the injection of energy corresponds to a peak on
the energy line: even though the forcing is localized in
space, its monochromatic nature (at 188 rad/s) makes it
local in the (k, w) plane. The forcing operates effectively at
low frequency and at low wave number as is expected in
the phenomenology of the Kolmogorov-Zakharov cascade.

The concentrated line of energy in the spectrum E(k, )
allows the dispersion relation to be computed; it is ex-
tracted by computing the position of the crest of the energy
line at each frequency and is displayed in Fig. 3 for various
values of the forcing P. The dispersion relation remains
close to the linear dispersion relation with a small but
systematic shift. This provides strong evidence that our
system is indeed weakly nonlinear. Thus, the quantitative
disagreement between the one-point spectrum and the WT
theory prediction [9,10] cannot be attributed to the exis-
tence of strongly nonlinear structures. Instead, the dis-
agreement is proposed to be attributed to the dissipative
mechanisms which are believed to exist at all scales rather
than being present at only small scales; hence the
Kolmogorov-Zakharov cascade is leaking [15].

Figure 3 allows us to quantify the departure of the
observed dispersion relation from the linear one. Notably,
it is shown that the correction increases with the power
input P with a behavior close to P'/2 behavior. It is also
observed to be constant at high wave numbers so that the
various dispersion relations are parallel to one another.
This behavior is of particular interest when compared
with the WT prediction. Indeed, it is expected that the
departure of the dispersion relation from the linear one
has a power law scaling in P which is identical to the
scaling for the energy spectrum [16]. Our experimental
measurements confirm this prediction: the exponent close
to 1/2 in P is common to both departure from linearity in
the dispersion relation and also to the energy spectrum.
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FIG. 3 (color online). Nonlinear dispersion relation w (k) com-
puted from the line of maximum energy in the space-time
spectrum of the plate deformation velocity for various input
power P of the forcing (from bottom to top PY/2 =1, 2, 3, 4
in arbitrary units). The dashed line is the linear dispersion
relation (3). A systematic shift is observed which increases
with the forcing power. The top inset shows the deviation from
the linear dispersion. At high wave numbers, the shift is seen to
be ind/ependent of k. The bottom inset shows the shift normalized
by P2,
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FIG. 4 (color online). Test of the validity of the change of
variable k < w using the dispersion relation. Solid blue or dark
gray line: direct measurement of the time spectrum E(w)—solid
red or gray (respectively black dashed) line: E(w) computed
from the space spectrum E(k) using the nonlinear (respectively
linear) dispersion relation to change variable. Inset: same for the
space spectrum E(k). Solid blue or dark gray line: direct esti-
mation of E(k)—red or gray (respectively black dashed) line:
E(k) computed from E(w) by the change of variable using the
nonlinear (respectively linear) dispersion relation.

The application of the WT turbulence theory is often
restricted to the prediction of the Kolmogorov-Zakharov
space spectrum E(k). Although some experiments directly
measure the space spectrum [17,18], it is often easier to
measure the motion at one given point as a function of
time. In that case, only the time spectrum E(w) can be
estimated. To compare with the theory, the space spectrum
is determined by using the dispersion relation to obtain
E(k) from E(w) [7,8,19]. This approach was used to de-
duce the law in Eq. (5) [9,10]. We can independently
estimate both E(w) and E(k) directly. We can assess the
validity of the change of variables technique above (via the
linear or nonlinear dispersion relation). The comparison of
the various cases is shown in Fig. 4. Both dispersion
relations allow us to reproduce the inertial range, with a
better agreement shown when using the nonlinear relation.
The large time or length scales are well reproduced only
when using the nonlinear dispersion relation. This vali-
dates the usual change of variables when the nonlinearity is
weak.

Our experimental approach of wave turbulence reveals
the main features of the weakly coupled waves that can be
usefully compared with weak turbulence theory. Until now,
only the spectrum E(k) has been compared with theoretical
prediction. However, WT theory can go far beyond spectra
predictions: it gives quantitative predictions for multipoint
statistics. Our present study confirms and quantifies the

weakly nonlinear behavior of the waves comprising the
turbulent cascade. It confirms that the scaling law in the
supplied power P is the same for the departure from the
linear dispersion relation and also for the energy spectrum.
Overcoming the discrepancy between experiments and
theory claimed previously, we have shown some agreement
between experimental results and WT theory. We antici-
pate that this experiment will allow precise and quantita-
tive comparisons with theoretical investigations of wave
turbulence [6,20,21] of prime importance for the large
number of turbulent systems in which extensive measure-
ments are out of reach.
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