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Any residual coupling of a quantum computer to the environment results in computational errors.

Encoding quantum information in a so-called decoherence-free subspace provides means to avoid these

errors. Despite tremendous progress in employing this technique to extend memory storage times by

orders of magnitude, computation within such subspaces has been scarce. Here, we demonstrate the

realization of a universal set of quantum gates acting on decoherence-free ion qubits. We combine these

gates to realize the first controlled-NOT gate towards a decoherence-free, scalable quantum computer.
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Decoherence of quantum information can never be com-
pletely avoided even with perfect experimental control. It
arises from the coupling of the quantum system to its
environment and eventually limits the achievable precision
of quantum information processing. One method to tackle
faulty information storage is quantum error correction [1–
3]. This approach relies on high-fidelity gates for detecting
as well as correcting errors. Another strategy is to passively
protect quantum information by storing the information in
a decoherence-free subspace (DFS) [4,5]. This method has
been implemented using photons [6,7], nuclear magnetic
resonance (NMR) systems [8], and trapped ions [9–11],
accompanied by proposals for decoherence-free quantum
computation in solid states [12], quantum dots [13], and
superconducting qubits [14]. DFS encoding has given rise
to an impressive increase in coherence time of more than a
factor of 100 [9]. However, the use of DFSs for quantum
computational operations so far was restricted to two im-
plementations: one in NMR [15] and one in optics [16].
The main challenge is to find methods to implement a
universal set of gates within DFS for a given physical setup
and to have sufficient experimental control to perform
these gates with high fidelity.

Typically, ion-trap quantum computers rely on quantum
bits encoded in long lived electronic states of individual
ions. Nevertheless, the phase of the qubits can deteriorate
quickly which leads to a loss of encoded information. This
dephasing is caused by random fluctuations of the energy
difference between the qubit states j0i and j1i. For qubits
based on optical transitions in atoms, this decoherence
mechanism is mainly caused by magnetic field noise and
frequency fluctuations of the laser driving the qubit tran-
sition. In addition, for upcoming realizations of a scalable
quantum computer based on segmented ion traps, ions are
moved across sizable distances where magnetic field gra-
dients lead to an additional, uncontrolled phase evolution

[17]. All these types of dephasing can be overcome by
encoding information in a logical qubit, realized by two
physical qubits of the form j0iL ¼ j1iP � j0iP � j10iP and
j1iL ¼ j0iP � j1iP � j01iP where the indices P and L
denote the physical and logical basis, respectively.
Ideally, the energy difference between two logical states
vanishes, and energy shifts common to both physical qubits
do not affect the energy difference of the logical eigen-
states. Thus, the phase between the two logical qubits is
preserved, and the logical eigenstates represent a DFS with
respect to the collective decoherence mechanisms de-
scribed above.
In this Letter, we use this encoding to implement a

universal set of logical gates towards a scalable quantum
computer. The set is composed of single-qubit rotations
and a two-qubit phase gate acting directly on the logical
qubits. Sequences of such logical gates allow implementa-
tion of arbitrary quantum circuits [18,19]. As an example,
we implement the entangling controlled-NOT (CNOT) gate
operation for logical qubits. We then use the CNOT gate

FIG. 1 (color online). Set of logical gate operations—�z rota-
tion, �x rotation, and conditional phase gate: A single ion ac-
Stark shift pulse allows for arbitrary rotation of the logical qubit
around the z axis; the MS gate represents a rotation about the x
axis of the corresponding Bloch sphere of the logical qubit; the
phase gate is realized by a copropagating bichromatic light field
as described in [21], applied on adjacent ions of two logical
qubits.
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operation, supplemented with a logical single qubit gate
operation, to create Bell states in the logical subspace.
Additionally, we characterize the CNOT gate operation via
quantum process tomography.

Our experimental system consists of a string of 40Caþ
ions trapped in a linear Paul trap. The physical qubits are
represented by the two electronic states S1=2ðm ¼
�1=2Þ � jSi � j1iP and D5=2ðm ¼ �1=2Þ � jDi � j0iP.
Individual ion qubits, or alternatively pairs of ions, are
manipulated by a focused laser beam at 729 nm, exciting
the quadrupole transition between the two states S1=2 and
D5=2 (see Fig. 1). Optical pumping initializes all ion qubits

in the jSi state, while Doppler cooling and subsequent
sideband cooling prepare the ion string in the motional
ground state of the axial center-of-mass mode. An addi-
tional bit flip on one of the ions initializes the logical qubits
in j0iL ¼ j10iP or j1iL ¼ j01iP. Final state detection is
performed using electron shelving of all ions on the S1=2 $
P1=2 transition by detecting the ions’ resonance fluores-

cence with a CCD camera. Absence or presence of light
corresponds to a projective measurement in the physical
qubit basis j1iP and j0iP, respectively. Details of the setup
can be found in Ref. [20].

The presented work is largely based on the subsequent
application of two different bichromatic gates, the condi-
tional phase (CP) gate [21] and the Mølmer and Sørensen
(MS) gate [22]. For both gates, the qubit-qubit interaction
is mediated by coupling the ions to a motional mode of the
ion string. The gate mechanism can be described by an off-
resonantly driven quantum harmonic oscillator with a
state-dependent driving force [23], i.e., a HamiltonianH /
½a expði�tÞ þ ay expð�i�tÞ�Si where ay and a represent
creation and annihilation operators for motional quanta,
and � defines the detuning from the motional sideband. For

the conditional phase gate, the coupling is given by Si ¼
�ð1Þ

z þ �ð2Þ
z , whereas in the case of the Mølmer and

Sørensen, gate Si ¼ �ð1Þ
x þ �ð2Þ

x . After an interaction time
� ¼ 2�=�, the harmonic oscillator returns to its initial
state so that the gate acts only on the internal states of
the ions. The gate action can be described by an effective
Hamiltonian Heff / S2i that is nonlinear in the spin opera-
tors. In the following, we present how to rewrite these gates
in the basis of logical qubits, thus representing building
blocks for encoded quantum information.

A universal set of gate operations can be realized with
arbitrary single-qubit rotations in conjunction with a uni-
versal two-qubit gate. In the following, we will discuss our
experimental realization of such a set of operations in a
DFS as proposed in [24], and similar to [25,26]. First, we
consider arbitrary operations on a single logical qubit. We
use rotations around the z axis (�z

L) and the x axis (�x
L) of

the logical qubit’s Bloch sphere. The z rotation is imple-
mented by addressing a single physical qubit with a laser
beam far detuned from resonance that shifts the qubits
energy levels due to the ac-Stark effect (see Fig. 1).

Because of the identity 1P � �z
P � �z

L, the z rotation of

one physical qubit directly translates into a z rotation on
the logical qubit. Rotations by an arbitrary angle Zð�Þ �
expð�i�=2�z

LÞ are controlled by the intensity and pulse

length of the laser pulse. Fidelities of 98(1)% were mea-
sured for the �z

L gate using Ramsey experiments.
The second single logical qubit gate, the �x

L rotation,
requires collective operation on both physical qubits, since
�x

L � �x
P � �x

P. To realize this operation, a focused beam
is centered between a pair of ions, equally illuminating
both with a bichromatic light field as described by Mølmer
and Sørensen [22]. The two frequencies are !0 � ð!z þ
�MSÞ, where !0 is the transition frequency from jSi to jDi,
!z represents the frequency of the center-of-mass mode in
the axial direction [!z � ð2�Þ 1.2 MHz], and �MS is a
detuning set to (2�) 7 kHz. The light field intensity is
chosen such that this operation rotates the corresponding
Bloch sphere of the single logical qubit by �=2 [in the
following referred to as Xð�=2Þ � expð�i�=4�x

LÞ] after a
gate time � of �½Xð�=2Þ� ¼ 2�=�MS ¼ 143 �s. Our char-
acterization of this operation by measuring the final pop-
ulations combined with parity oscillations on the output
state [27] indicates a fidelity for a logical �=2 pulse of 96
(2)%.
The set of universal gates is completed by a two-qubit

interaction, here a conditional phase gate. For operations
on two logical qubits, we work on a string of four ions,
where ions 1 and 2 (3 and 4) represent the first (second)
logical qubit. Performing a phase gate on the center physi-
cal qubits (2 and 3) will translate into a phase gate�z

L � �z
L

acting on the logical qubits (also see Ref. [24]). For this
purpose, the two center ions are illuminated by a bichro-

(a)

(b)

FIG. 2. Pulse sequence to realize a controlled-NOT operation
within a DFS—The logical pulse sequence (a) and the operations
on the physical qubits (b) are depicted: A logical phase gate is
performed on two logical qubits. For the target qubit, the phase
gate is enclosed by two Ramsey pulses, respectively �=2 rota-
tions along the x and y axis of the corresponding Bloch sphere
(represented by a composite �z�x�z rotation).
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matic focused beam realizing a �z
P � �z

P gate as proposed
in [21]. The frequencies of the bichromatic laser beam are
set to !0 � 1=2ð!z þ �CPÞ. For our implementation, a
detuning of about 2 kHz was chosen for �CP, resulting in
a gate time of �ðCPÞ ¼ 2�=�CP ¼ 470 �s. The perform-
ance of this novel phase gate has been investigated by
applying it to two ions and carrying out process tomogra-
phy [28], obtaining a mean gate fidelity of 94(1)%.

We combine single- and two-qubit logical gates to im-
plement the entangling CNOT operation within the chosen
DFS. To this end, the logical phase gate is enclosed by two
Ramsey pulses on the logical target qubit (see Fig. 2).
Depending on the control state, the second Ramsey pulse
will either flip the target qubit or recover its initial state.
Experimentally, we achieve an improved gate fidelity by
splitting the phase gate into two pulses, allowing for a spin
echo pulse on both logical qubits. The resulting ideal
unitary matrix associated with our CNOT operation is

UCNOT ¼
0 �1 0 0
i 0 0 0
0 0 1 0
0 0 0 i

0
BBB@

1
CCCA:

In order to prove that the gate acts as intended, this CNOT
gate is applied to generate entangled states within the DFS.
After preparation of one of the four basis states
fj00iL; j01iL; j10iL; j11iLg, a superposition between the
logical ground and excited state of the control qubit is
generated by a Xð�=2Þ rotation. Subsequent application
of the CNOT gate directly maps the input states onto the Bell

basis states fj�þiL; j��iL; jcþiL; jc�iLg defined by
j��iL ¼ j00iL � j11iL and jc�iL ¼ j01iL � j10iL. In
the physical basis, these states are equivalent to four-qubit
Schrödinger cat states. The output state is determined by
quantum state tomography in the Hilbert space of the four
physical qubits. Restricting quantum computation to a sub-
space of the total Hilbert space leads to two basic questions
at the end of a computation: (a) Is the outcome within the
subspace? (b) How close is the result to the expected one?
Accepting only results within the DFS allows for com-
putation at higher fidelities, but makes it probabilistic.
The probability of a state to remain in the DFS after
application of a certain gate sequence will be called per-
manence P. The fidelity of the generated state within the
DFS can be calculated in a straightforward manner. The
four Bell basis states are obtained with fidelities F of
f89ð1Þ; 91ð1Þ; 91ð1Þ; 92ð1Þg% and a permanence P of
f90:2; 94:3; 83:9; 86:0g%. The real part of the obtained
density matrices of the four different Bell states are de-
picted in Fig. 3.
In order to fully characterize the logical CNOT gate, its

performance is analyzed by quantum process tomography
[28]. For the given two logical qubit Hilbert space, it is
performed by creating 42 ¼ 16 linear independent logical
input states, applying the CNOT gate, and fully character-
izing the output state via state tomography in the physical
basis (34 settings each). Each experimental setting was
repeatedly measured 100 times and averaged, resulting in
a total measurement time per setting of about 5 seconds. In
total, the characterization of the CNOT gate requires about
2 hours of measurement time. Evaluation of this data
allows us to derive the so-called � matrix that describes
the investigated process E, here the CNOT within a DFS,

such that 	out ¼ Eð	inÞ ¼ P
4N

m;n¼1 �m;nAm	inA
y
n , where N

is the number of logical qubits, 	in and 	out are the input
and output density matrices, and A is a basis of operators in
the Hilbert space of dimension 2N � 2N [29]. Taking 2�
105 pure logical input states, randomly drawn from the
unitary group Uð4Þ according to the Haar measure [30],
the mean gate fidelity is then calculated by �F ¼
meanc i

½hc ijUyEðjc iihc ijÞUjc ii�, where U represents

the ideal unitary map for the implemented process. We
infer a mean permanence of the CNOT operation of �P ¼
89ð7Þ% and a mean gate fidelity of �F ¼ 89ð4Þ% within the
DFS. The overall fidelity of �P �F � 79ð7Þ% is consistent
with the achieved fidelities of its constituent operations of
about 83(3)%. The mean gate fidelity within the DFS of
89(4)% is comparable with current state-of-the-art two-
qubit quantum gates acting on selected qubits out of a
quantum register, operating at a fidelity of 92.6(6)% [28].
Infidelities of the gate can be classified according to their

effect on the permanence or gate fidelity within the DFS.
Addressing errors constitute the main error source for
leaving the DFS during a pulse sequence. When focusing
the laser down onto a pair of two ions, some residual light
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FIG. 3 (color online). The DFS-CNOT gate can be used to
generate Bell states in the logical qubit Hilbert space. For a
given superposition between j0iL and j1iL on the control qubit,
the resulting output state will be one of the four Bell states. The
real part of the obtained density matrices for all four Bell states is
shown above. On average, a fidelity of 91(2)% is achieved within
the decoherence-free subspace.
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is also applied to the adjacent ions. The addressing error is
characterized by the ratio of the Rabi frequency of a logical
qubit compared to the Rabi frequency of an adjacent,
single ion. For the chosen parameters, the ratio was about
5%. This unwanted excitation on the neighboring ion
results in a population loss from the DFS. Another error
source for leaving the DFS are off-resonant excitations
during the bichromatic gates. To minimize this error, we
use amplitude-shaped laser pulses as described in [31].
Errors within the DFS are mainly due to unbalanced in-
tensities of the light fields acting on the two simultaneously
addressed ions. The difference between the Rabi frequen-
cies is caused by beam pointing instability with regard to
the ion position. Finally, intensity fluctuations of about 5%
lead directly to phase errors of the single-logical qubit
phase gate via the intensity dependence of the ac-Stark
effect. Note that laser frequency and magnetic field fluctu-
ations do not contribute to errors since the DFS encoding
protects against such decoherence. Other possible error
sources contribute in total to less than 1%. All shortcom-
ings described above are caused by technical imperfections
and do not represent a fundamental limit to the achievable
fidelities.

Spontaneous decay of the excited level as the only
fundamental error can be avoided by encoding the physical
qubits in the two Zeeman-ground states [10]. This can be
achieved by mapping any D-state populations into the
second ground state—resulting in a qubit that is resistant
against dephasing and additionally does not decay
spontaneously.

To conclude, we have demonstrated a universal set of
quantum gates acting in a decoherence-free subspace of
trapped ions, consisting of addressable gate operations,
namely: single-logical qubit �z

L and �x
L as well as a two

logical qubit phase gate �z
L � �z

L. Using these gates, we
have implemented and characterized a controlled-NOT gate
within a decoherence-free subspace acting on logical ion
qubits. Our implementation achieves fidelities close to
current state-of-the-art quantum computation as well as it
employs logical qubits with a coherence time 100 times
longer than their single constituents. These techniques can
be directly applied to any amount of logical qubits.
Replacing the given linear trap with segmented traps as
proposed in Ref. [17] would open the possibility for sig-
nificantly more logical qubits.
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