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Quantum states inevitably decay with time into a probabilistic mixture of classical states due to their

interaction with the environment and measurement instrumentation. We present the first measurement of

the decoherence dynamics of complex photon states in a condensed-matter system. By controllably

preparing a number of distinct quantum-superposed photon states in a superconducting microwave

resonator, we show that the subsequent decay dynamics can be quantitatively described by taking into

account only two distinct decay channels: energy relaxation and pure dephasing. Our ability to prepare

specific initial quantum states allows us to measure the evolution of specific elements in the quantum

density matrix in a very detailed manner that can be compared with theory.
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Quantum coherence provides the fundamental dis-
tinction between quantum and classical states and is at
the root of much of the nonintuitive behavior of quantum
systems; quantum coherence also provides the central
impetus for trying to build a quantum computer.
Coherence is, however, extraordinarily delicate, decaying
as a quantum system interacts with its environment or
vanishing as the result of even a simple measurement. A
quantitative understanding of the decoherence process is
critically important for predicting the behavior of quantum
systems. The harmonic oscillator is a particularly compel-
ling system for such studies, as an oscillator includes an
infinite number of energy levels from which arbitrarily
complex states may be created, yet theories for decoher-
ence in this system are especially simple. Harmonic oscil-
lators are also generic, as they map into a large number of
different physical systems: a highly useful example is the
electromagnetic resonator, which is central to a number of
approaches to building a quantum computer [1–5], serving
as a quantum memory element or a communication bus.
The recent development of techniques for generating and
measuring arbitrarily complex quantum states in a har-
monic oscillator [6–11] presents the intriguing possibility
of exploring the detailed time evolution of these complex
states, allowing testing of the theories of decay dynamics
[12–16].

Decoherence of complex harmonic-oscillator states has
been studied in previous experiments [13,14,16]. The ef-
fect of energy decay was measured using Schrödinger cat
states by observing loss of interference fringes [13,16] or
by directly filming the Wigner function [14]. Dephasing
was measured by injecting noise and then observing the
loss of interference fringes for specially prepared states
[13]. Here we describe a series of experiments in which we
prepare specific complex quantum-superposed photon
states in an electromagnetic resonator and then monitor
the decay dynamics of its density matrix. By selectively

preparing certain types of states, we can highlight the
decay of various elements in the density matrix, in particu-
lar, off-diagonal ones describing phase coherence, for a
precise comparison with theory. For the first time, the time
decay of various off-diagonal elements is explicitly mea-
sured and compared to theory, which shows a unique and
simple signature. We also demonstrate that energy decay
and pure dephasing can be measured simultaneously: sur-
prisingly, pure dephasing rates can be extracted even when
it is not dominant, indicating the precision of our measure-
ment. In characterizing a superconducting resonator cir-
cuit, our experiment measures an unexpected dephasing
rate that is 30 times slower than energy decay. To perform
these experiments, we have measured the decay of more
than 13 unique off-diagonal elements for the superposed
photon Fock states j0i þ jni, n ¼ 1–8, for the states jmi þ
j3i, m ¼ 1, 2, and for the Schrödinger cat states.
Our experiment is performed using a half wavelength

coplanar waveguide resonator made from superconducting
aluminum [10–12]. The cavity has a resonance frequency
of 6.971 GHz and is weakly coupled through a capacitor to
an external microwave source. Nonclassical photon states
are generated and measured via a second weak capacitive
coupling to a superconducting phase qubit, whose state can
be manipulated using a second microwave source and
measured quickly with single-shot fidelity near unity
(�90%) [17]. The strong nonlinearity of the qubit allows
complete control of the resonator photon state [11]. The
qubit has an energy relaxation time T1q � 300 ns and a

phase coherence time T2q � 120 ns, whereas the resonator

has an energy relaxation time T1 � 2:4 �s, similar to
previous devices [12,18].
A single measurement of the qubit state gives an out-

come of jgi or jei; by repeating the state preparation and
measurement, typically hundreds of times, we determine
the probability Pe for the qubit excited state. Tomography
of the resonator state involves measuring this probability
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for a range of resonator preparation parameters, followed
by a photon swap with the qubit, as described below.

Nonclassical resonator states are generated with qubit
pulse sequences similar to those in previous experiments
[11], which are based on the Law-Eberly protocol [19].
The resonator state is subsequently measured after a vari-
able delay time 0 � t � 15 �s by first displacing the
resonator with a coherent microwave pulse, which is char-
acterized by a complex amplitude �, where j�j2 corre-
sponds to the average photon number. The qubit is then
brought into resonance with the resonator for a variable
interaction time �, allowing photon exchange between the
two, after which the qubit state is measured. Because the
resonator-qubit swapping frequency depends on photon
number n ¼ 0; 1; 2; . . . , a measurement of the excited qubit
state Pe versus � is used to determine the photon occupa-
tion probabilities Pnð�Þ in the resonator. In a prior pub-
lication [11], we measured the full Wigner distribution
Wð�Þ from the parity

P
nð�1ÞnPnð�Þ at thousands of

points in the complex phase space �. Here we instead
use a much more efficient sampling for �, of only 60
points in total, arranged as two concentric circles with radii
j�j ¼ 1:10 and 1.45, from which we calculate the density
matrix and reconstruct the Wigner distribution [20]. The
resulting readout fidelity is close to that obtained with full
Wigner tomography, with the increased uncertainty (�2%)
mostly coming from the smaller sample size.

The decay dynamics of a harmonic-oscillator quantum
state are described by a Markovian master equation that
assumes uncorrelated energy relaxation and dephasing
processes [21]. The density matrix element �mn in the
Fock-state basis obeys

d�mn

dt
¼ �

�
mþ n

2T1

þ ðm� nÞ2
T�

�

�mn

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþ 1Þðnþ 1Þp

T1

�mþ1;nþ1; (1)

where T1 and T� are the resonator energy relaxation and

dephasing times, respectively. For m ¼ n, Eq. (1) reduces
to the master equation for photon number (Fock) state
decay [12], with the n-photon Fock-state lifetime given
by Tnn ¼ T1=n. For the off-diagonal elements m � n,
dephasing causes �mn to decay at an additional rate pro-
portional to the square of the distance from the diagonal. In
both cases, decay proceeds along the diagonal �mn !
�m�1;n�1 ! �m�2;n�2 ! � � � .

The decoherence for the Fock-state superpositions j0i þ
jni is particularly simple, as only one independent off-
diagonal element is nonzero. This element, �0n (¼��

n0),

decays at the rate

1

T0n

¼ 1

2Tnn

þ 1

T0n;�

; (2)

where T0n;� ¼ T�=n
2. By monitoring �nn and �0n for this

type of state, we can directly determine the dephasing time
T� and validate the prediction of Eq. (2).

In Fig. 1, we show the evolution of the state j0i þ j3i at
five delay times; a full animation of 30 time steps is
available online [22]. Initially, the only nonzero terms in
the density matrix are �00, �33, and �03 (¼��

30), as ex-

pected. As time evolves, the diagonal elements decay to
�00. The off-diagonal element �03 also decays with time,
but without other off-diagonal states becoming occupied,
as expected. In Fig. 1(c), we display the amplitudes of the
�33 and �03 elements versus time, together with �22, �11,
and �00. For clarity, statistical errors (�2%) are not shown.
From the solid line fits, we obtain the decay times T33 and
T03, and using Eq. (2), we extract the dephasing time T03;�.

We have measured the evolution for the states j0i þ jni,
n ¼ 1–8; in Fig. 1(d), we show the measured decay times
Tnn, T0n, and T0n;�. We find T1 ¼ 2:4 �s, with Tnn scaling

as 1=n, consistent with the n-photon Fock-state lifetime, as
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FIG. 1 (color online). Decay of the j0i þ jni states.
(a) Measured density matrices at five delay times for the decay
of j0i þ j3i. The amplitude and phase of �mn is represented by
the length and direction of an arrow in the complex plane (for
scale, see the legend on the right). The element �03 (¼��

30) is the

only off-diagonal term that is nonzero during evolution, as
expected. (b) Reconstruction of the Wigner distribution Wð�Þ
from data in (a). The distribution decays to the ground state j0i
for long times. (c) Amplitudes of the density matrix elements
versus time for the decay of j0i þ j3i. Solid lines are fits to the
data for �33 and �03, from which decay times T33 and T03 are
obtained. (d) Plot of Tnn (solid circles), T0n (solid squares), and
T0n;� (solid hexagons) versus n for n ¼ 1–8 obtained for a range

of states j0i þ jni. Dephasing times T0n;� are calculated from

Eq. (2). Gray line (blue online) (slope ¼ �1) and black line
(slope ¼ �2) are weighted least-square fits to obtain the reso-
nator T1 and T�, respectively.
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observed previously [12,15]. We also find that T0n;� has

scaling consistent with 1=n2, confirming the dephasing
mechanism. The resonator dephasing time T� is very

long, approximately 70 �s, and is roughly consistent
with off-resonant coupling to qubit dephasing. Although
T� � T1 and energy decay dominates decoherence, the

precision of our measurement allows us to identify a much
smaller dephasing rate.

Decoherence theory can be further tested by creat-
ing states with nonzero elements closer to the diagonal,
which then decay to other elements in the density matrix.
In Fig. 2, we show the evolution for the state j2i þ j3i,
which initially has one nonzero off-diagonal element at �23

(¼��
32). As the state evolves, this element decreases in

amplitude, but generates nonzero amplitudes in the se-
quence of elements �23 ! �12 ! �01.

We plot the magnitude of these elements versus time in
Fig. 3, along with sequence data taken from the states j1i þ
j3i and j0i þ j3i. The evolution is qualitatively similar to
that found for the diagonal elements for Fock states [12].
We see good agreement between experiment and theory,
indicating that the off-diagonal evolution is as predicted by
the master equation. This is the first observation of the
sequential movement of the off-diagonal coherence ele-
ment in the density matrix due to energy relaxation.

We have also monitored the evolution of states involving
more than a single pair of off-diagonal density matrix
elements. Figure 4(a) shows the evolution of the state j0i þ
ij2i þ j4i, which initially has three unique nonzero off-
diagonal elements. Figure 4(b) shows the decay of the

coherent state j� ¼ ffiffiffi
5

p i, created by driving the resonator
with a classical pulse to an average photon number of
j�j2 ¼ 5 [10,12]. During state evolution, the coherent
peak is observed to move toward the origin at a rate
consistent with T1, while the Wigner distribution remains
that of a coherent state, as expected from theory with
T� � T1.

Figure 4 also shows the decay of the odd (c) and even (d)
Schrödinger cat states [14]. These states are created from a

superposition of coherent states j�¼ i
ffiffiffi
2

p i�j�¼�i
ffiffiffi
2

p i,
where the even (odd) cat is for the plus (minus) sign, and
consist of a superposition of even (odd) number photon
states in the Fock-state basis. In the experiment, the photon
numbers are truncated above n ¼ 6. As seen in the figure,
the cat states feature a Wigner distribution with two peaks,
corresponding to the coherent states displaced from the
origin, but with quantum interference fringes between
them. The even and odd cats have opposite fringe patterns,
as expected. The interference fringes disappear at �1 �s,
indicating the loss of phase coherence mostly due to en-
ergy relaxation. The two coherent peaks begin to merge at
�3 �s, indicating a complete energy decay of the system
towards a vacuum state.
Sequential contour plots showing the decay dynamics

for all of the states mentioned here are available online
[22]. In all of these states, animations constructed from the
experimental data agree well with simulations based on the
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FIG. 2 (color online). Snapshots of the time evolution of j2i þ
j3i. (a) Measured and simulated density matrices at five delay
times. The simulation starts with the measured density matrix at
minimum delay and uses the decay parameters T1 ¼ 2:4 �s and
T� ¼ 70 �s. Note that only the off-diagonal elements �23 !
�12 ! �01 are nonzero. (b) Wigner distributions Wð�Þ as a
function of time reconstructed from data in (a).

FIG. 3 (color online). Evolution of the off-diagonal elements
for jmi þ j3i with (a) m ¼ 0, (b) m ¼ 1, and (c) m ¼ 2. Right
panels illustrate the evolution of the off-diagonal elements. Left
panels display amplitude of matrix elements versus time. Solid
lines are simulations based on Eq. (1), using T1 ¼ 2:4 �s and
T� ¼ 70 �s.
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measured initial density matrix and the decay parameters
T1 ¼ 2:4 �s and T� ¼ 70 �s.

In conclusion, we have measured the evolution of a
number of nonclassical photon states, prepared and mea-
sured in a microwave electromagnetic resonator using a
superconducting phase qubit. The deterministically gener-
ated states have nonzero off-diagonal elements in their
density matrices, and we find that their time evolution is
in excellent agreement with theoretical predictions based
on the Markovian master equation, both in the sequence of
elements and in the individual decay rates. While decay
from energy loss is in good quantitative agreement with
theory, we can only conclude that the decay due to dephas-
ing is consistent with theory, due to the comparatively
small effect of dephasing in this system (T� � T1). We

also find that animations of decoherence for all of the states
we prepared and monitored are in excellent agreement with
simulations.
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FIG. 4 (color online). Evolution of (a) the state j0i þ ij2i þ
j4i, (b) the coherent state j� ¼ ffiffiffi

5
p i, (c) the odd Schrödinger cat

state j� ¼ i
ffiffiffi
2

p i � j� ¼ �i
ffiffiffi
2

p i, and (d) the even Schrödinger
cat state j� ¼ i

ffiffiffi
2

p i þ j� ¼ �i
ffiffiffi
2

p i. Animations of the evolution
for all states can be viewed online [22].
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