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We employ a basis set representation for classical force fields to derive an original system of exact

integral equations relating each mode in the force field to an associated set of structural correlation

functions. This generalized Yvon-Born-Green theory provides a framework for interpreting complex

many-body correlations and also for variationally determining optimal interaction potentials for proteins

and other complex molecules directly from structural correlation functions.
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The direct quantitative deduction of molecular interac-
tions from structural information has significant ramifica-
tions for nanotechnology, molecular biology, and a variety
of physical systems. The many-body correlations inherent
to condensed phase systems make this a challenging in-
verse statistical physics problem. In the case of monatomic
liquids interacting via central pair potentials, the Yvon-
Born-Green (YBG) equation provides an exact linear rela-
tion determining these pair potentials from knowledge of
two- and three- particle correlation functions [1].
Subsequently, the YBG equation has been generalized for
molecular systems with pair additive potentials [2,3].
However, accurate models for many molecular systems
of interest often involve many-body potentials to describe,
e.g., angle and torsional interactions. The YBG equation
has not been generalized to treat intramolecular many-
body potentials and has not been applied to the inverse
problem for complex molecular systems. Instead, current
methods for deducing interaction potentials from molecu-
lar structures implicitly treat many-body correlations by
relying upon either approximate closure relations that
relate the unknown potentials to simple distribution
functions [4–7] or iterative nonlinear regression techniques
[8–10], e.g., reverse Monte Carlo methods [11,12].
Consequently, exact linear equations for determining
many-body potentials from structural correlation functions
would represent a significant advance in addressing this
inverse problem and would, moreover, provide consider-
able insight into the important role played by many-body
correlations in complex molecular systems.

This Letter introduces a generalized YBG theory for
complex molecular systems. We employ a basis set repre-
sentation for classical force fields to derive exact linear
relations between force functions and related structural
correlation functions. We prove that, given appropriate
canonical distribution functions for an unknown potential
function, the set of potential functions that satisfy the
generalized YBG equation determine an optimal approxi-
mation to the unknown potential. Consequently, force-
matching variational principles for determining approxi-
mate potentials [13–16] can be implemented directly from

structural correlation functions. We numerically demon-
strate the quantitative accuracy of this theory for a model
protein system.
We consider the canonical ensemble for an n particle

system with a potential energy function that may be ex-
pressed as a function of the Cartesian coordinates r ¼
ðr1; . . . ; rnÞ:

uðrÞ ¼ X
�

X
�

u� ðc � ðfrg�ÞÞ; (1)

where � identifies a particular type of interaction (e.g., a
bond angle interaction) that is a function of a particular
mode c � (e.g., a bond angle) that is itself a function of the

Cartesian coordinates for a particular set of particles � in
the system. The force on particle i may be expressed

f iðrÞ ¼
X
�

Z
dz�� ðzÞGi;� ðr; zÞ; (2)

where �� ðzÞ ¼ �du� ðzÞ=dz is the force on mode � and

G i;� ðr; zÞ ¼
X
�

@c ��ðrÞ
@ri

�ðc ��ðrÞ � zÞ; (3)

with c ��ðrÞ � c � ðfrg�Þ. The force field f is identified as a
set ff1ðrÞ; . . . ; fnðrÞg of n vector valued functions that de-
termine the force on each particle in a given configuration
r. This set may be considered to be an element in a vector
space of force fields [17]. Equation (2) represents f as a
linear combination of force field basis vectors, G� ðzÞ, with
elements given by Eq. (3). The set of basis vectors included
in Eq. (2) spans a subspace in the vector space of force
fields and a particular continuous set of coefficients,�� ðzÞ,
identifies a particular force field in this subspace [18]. The
inner product between basis vectors is defined as a canoni-
cal ensemble average according to the equilibrium con-
figuration distribution function, pðrÞ/ exp½�uðrÞ=kBT�:

G � ðzÞ � G� 0 ðz0Þ ¼
�X

i

Gi;� ðr; zÞ � Gi;� 0 ðr; z0Þ
�

¼ �G�� 0 ðz; z0Þ þ ��;� 0g� ðzÞ�ðz� z0Þ;
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where

g� ðzÞ ¼
�X

�

jrc ��ðrÞj2�ðc ��ðrÞ � zÞ
�

�G�� 0 ðz; z0Þ ¼
� X
���0

ðrc ��ðrÞ � rc � 0�0 ðrÞÞ�ðc ��ðrÞ � zÞ

� �ðc � 0�0 ðrÞ � z0Þ
�
;

are structural correlation functions and r ¼
ð@=@r1; . . . ; @=@rnÞ. In general, the basis vectors are not
orthogonal because they correspond to correlated molecu-
lar interactions.

We derive our distribution function theory from the
force balance relation:

kBT
@pðrÞ
@ri

¼ fiðrÞpðrÞ: (4)

Each side of this relation is manipulated by taking the
scalar product with Gi;� , summing over i, and integrating

over the configuration space. The resulting right hand
expression is the inner product of the force field with the
basis vector G� ðzÞ: b� ðzÞ ¼ G� ðzÞ � f and may be calcu-

lated directly from correlation functions involving the
force field. Alternatively, f may be expanded according
to Eq. (2) and b� may be decomposed into direct and

indirect contributions

b� ðzÞ ¼ �� ðzÞg� ðzÞ þ
X
� 0

Z
dz0�� 0 ðz0Þ �G�� 0 ðz; z0Þ: (5)

Upon applying the same operations and performing inte-
gration by parts, the left hand expression of Eq. (4) be-
comes

kBT
Z
dr
X
i

Gi;� ðr;zÞ �@pðrÞ@ri
¼kBT

�
dg� ðzÞ
dz

�L� ðzÞ
�

(6)

where L� ðzÞ ¼ hP��c ��ðrÞ�ðc ��ðrÞ � zÞi and � ¼P
ið@=@riÞ2. Equations (5) and (6) demonstrate that the

inner product of the force field with each basis vector
may be expressed in terms of structural correlation func-
tions. Equating these expressions, we obtain

kBT

�
dg� ðzÞ
dz

� L� ðzÞ
�
¼ g� ðzÞ�� ðzÞ

þX
� 0

Z
dz0 �G�� 0 ðz; z0Þ�� 0 ðz0Þ

(7)

for each � included in Eq. (1).
Equation (7) generalizes the YBG equation by defining a

system of linear integral equations relating each force
function �� (and therefore each interaction potential u� )
to an associated correlation function for that mode and a set
of higher order distribution functions describing the corre-
lation between the modes in the potential. In the case of a
simple monatomic fluid, the system potential is comprised
of central pair potentials, � identifies a particular pair of
particles fi; jg, c ��ðrÞ is the pair distance rij, g� ðzÞ ¼
2hP��ðc ��ðrÞ � zÞi, L� ðzÞ ¼ 2g� ðzÞ=z, the sums over �
and �0 incorporate the correct combinatorial factors, and
Eq. (7) becomes equivalent to the YBG equation for simple
liquids. However, Eq. (7) remains valid for any molecular
potential that can be expressed in the form of Eq. (1). We
note that the generalized YBG equation is not valid at
singularities that may appear in rc �� and �c ��.

This derivation may be generalized in the case that each
force function, �� , is represented with a linear combina-

tion of discrete basis functions f�dðzÞ:
�� ðzÞ ¼

X
d

��df�dðzÞ; (8)

where ��d are the constant coefficients of the basis func-

tions and, equivalently, discrete coefficients for the force
field. The appropriate generalization of Eq. (7) is a system
of coupled linear algebraic equations for each �d combi-
nation:

� kBT

��X
�

jrc ��ðrÞj2f0�dðc ��ðrÞÞ
�
þ L�d

�
¼ X

� 0d0
G�d;� 0d0�� 0d0 ; (9)

where f0�dðzÞ ¼ df�dðzÞ=dz, G�d;� 0d0 ¼ G�d � G� 0d0 , and
G�d;� 0d0 and L�d are discrete analogs of the corresponding
continuous correlation functions that are defined by replac-
ing each instance of �ðc ��ðrÞ � zÞ with f�dðc ��ðrÞÞ.
Equations (7) and (9) readily generalize for the case that
the force field includes both continuous, �� ðzÞ, and dis-
crete, ��d, parameters.

Given an appropriate set of equilibrium structural corre-
lation functions for an unknown potential, the generalized
YBG equation, Eq. (7), determines the potential functions
of a given form that provide a variationally optimal ap-

proximation to the unknown potential. In the case that the
true potential,UðrÞ, for the system is of some unknown and
arbitrarily complex form and the approximate potential is
assumed to be of the form given by Eq. (1), then Eq. (7)
determines the interaction potentials, u� ðzÞ, that minimize

the positive semidefinite quadratic functional of force
fields:

�2½f0� � jjF� f0jj2 �
�X

i

jFiðrÞ � f0iðrÞj2
�
U
; (10)

where jjAjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A �A

p
is a norm in the vector space of

PRL 103, 198104 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 NOVEMBER 2009

198104-2



force fields, F is the force field defined by gradients of the
unknown potential U with elements FiðrÞ ¼ �@UðrÞ=@ri,
f0 is a trial force field with elements f0iðrÞ, and the sub-
scripted angular brackets denote a canonical ensemble
average according to the Boltzmann distribution for U. If
U ¼ u, then f with elements fi given by Eq. (2) provides
the only force field for which �2 ¼ 0 and, in addition, f
also satisfies Eq. (7). If U � u, then the force field f with
elements given by Eq. (2) and that satisfies Eq. (7) for each
�� provides the unique minimum of this functional for all

force fields defined by potentials of the form given by
Eq. (1). This follows because the force field f that mini-
mizes �2 is the orthogonal projection of F onto the basis
set specified by the assumed form of the approximate
potential [17–19]. Therefore, G� ðzÞ � F ¼ G� ðzÞ � f ¼
b� ðzÞ, which can be related to structural correlation func-

tions as in Eq. (5). However, in this case, the correlation

functions are canonical ensemble averages for the un-
known potential, U.
The multiscale coarse-graining method [15,16] employs

a force-matching variational principle [13,14] analogous to
Eq. (10) and explicitly uses force correlation functions to
determine the unique coarse-grained (CG) force field for a
specified basis set that provides an optimal approximation
to the atomistic many-body potential of mean force
[17,18,20]. The preceding argument implies that this varia-
tionally optimal potential can be determined from the
generalized YBG equation.
We have employed this theory to determine the interac-

tion potentials for the Honeycutt-Thirumalai (HT) protein
model [21,22] directly from canonical structural correla-
tion functions calculated from equilibrium molecular dy-
namics simulations. The HT protein model is an implicit
solvent CG model that represents each amino acid with a
single interaction site that is one of three distinct types,
either hydrophobic (B), hydrophilic (L), or neutral (N).
The interaction potential for the HT model includes bond
stretch, bond angle, and two distinct types of dihedral angle
potentials, as well as nonbonded pair potentials between
sites. Table I defines the precise form and parameters for
the HT model. In Table I and subsequently, all energies
are reported in terms of ", the well depth of the attractive
B� B interaction, and all distances are reported in terms
of the equilibrium bond length, a.
The 46 amino acid HT protein sequence

B9N3ðLBÞ4N3B9N3ðLBÞ5L was simulated with GROMACS

3.3.3 [23,24], using a stochastic dynamics algorithm to
generate a canonical ensemble of 105 configurations at a
temperature approximately equal to the protein’s folding

TABLE I. Comparison of parameters for the HT model and
parameters calculated directly from structural correlation func-
tions. Type 1 dihedral angles include less than two N sites, while
type 2 dihedral angles include two or more N sites.

Nonbonded Parameters

Pair Potential u� ðrÞ ¼ C12ðr=aÞ�12 � C6ðr=aÞ�6

Pair Parameter Exact Calculated % Error

B� B C12 4.00 3.98 �0:57
C6 4.00 3.98 �0:50

B� L, L� L C12 2.67 2.61 �1:94
C6 �2:67 �2:66 �0:31

N � B, N � L, N � N C12 4.00 3.99 �0:15
C6 0.00 �0:006 N/A

Bonded Parameters

Bond Stretches u� ðrÞ ¼ 1
2 krðr� r0Þ2=a2

all bonds
kr 100.00 99.88 �0:12
r0 1.00 0.9999 �0:01

Bond Angles u� ð�Þ ¼ 1
2 k�ð�� �0Þ2

all angles
k� 20.00 19.97 �0:13
�0 105.00 104.98 �0:02

Dihedral Angles u� ðc Þ ¼ P5
n¼1 Ancos

nðc � 1800Þ

dihedral type 1

A1 2.400 2.388 0.51

A2 0.000 �0:028 N/A

A3 �4:800 �4:765 �0:73
A4 0.000 0.020 N/A

A5 0.000 �0:016 N/A

dihedral type 2

A1 0.600 0.606 0.93

A2 0.000 �0:005 N/A

A3 �0:800 �0:801 0.08

A4 0.000 0.008 N/A

A5 0.000 0.006 N/A
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FIG. 1 (color online). Quantitative validation of the general-
ized YBG theory for the HT model peptide. (a) Comparison of
b� ðzÞ for type 1 dihedral angles calculated using force (solid

line) and structural (dashed line) correlation functions.
(b) Comparison of the exact (solid line) nonbonded pair poten-
tials with those calculated from structural correlation functions
(dashed line).
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temperature. At this temperature, the protein sampled
both folded and also more extended conformations. We
obtained similar results at both higher and lower
temperatures.

As a first numerical test, we calculated each �� in the

force field directly from Eq. (7) using structural correlation
functions and without any assumptions regarding the form
of the force functions. Figure 1(a) compares calculations of
b� ðzÞ using forces sampled from the simulations according

to G� ðzÞ � f with calculations of b� ðzÞ using Eq. (6) for �
corresponding to the type 1 dihedral angle potential.
Singularities in calculations for the dihedral angle at c ¼
00, �1800 were treated by neglecting their contribution to
L� ðzÞ and by setting dg� ðzÞ=dz ¼ 0 at c ¼ �1800. A
centered running average over 11 grid points was also
employed to smooth the numerical derivative, except for
the first and last five grid points, which were linearly
interpolated. Despite these approximations, Fig. 1(a) dem-
onstrates that the necessary inner products of the force field
are accurately determined from structural correlation func-
tions. Figure 1(b) compares the nonbonded pair potentials
employed in the original simulations with those calculated
directly from structural correlation functions and demon-
strates the quantitative accuracy of the calculated
potentials.

As a second test, the parameters for the HT protein force
field were calculated using the discrete YBG equation,
Eq. (9). Table I presents the numerical errors in the calcu-
lated force field parameters and demonstrates similar quan-
titative accuracy. The C6 parameter for the B� L and
L� L pair interactions is miscalculated by �1:9%, most
likely as a result of the limited sampling for these inter-
actions. All of the other force field parameters are accu-
rately recovered to within less than 1.0%.

The generalized YBG theory variationally determines
optimized potentials directly from structural correlation
functions. This theory provides a powerful method for
calculating CG force fields from structure ensembles de-
termined from, e.g., atomistic simulations or NMR mea-
surements [25]. It provides the basis for developing
approximate perturbation theories for calculating force
fields from partial knowledge of the structure ensemble
obtained from, e.g., small angle scattering measurements.
Finally, because the generalized YBG theory exactly treats
many-body correlations in protein structures, when com-
bined with a recent theory for transferable CGmodels [26],
the present Letter provides the foundation for variationally
calculating optimal knowledge-based [27] potentials from
the protein databank.
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