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The origin of magnetic flux noise in superconducting quantum interference devices with a power spec-

trum scaling as 1=f (f is frequency) has been a puzzle for over 20 years. This noise limits the decoherence

time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of

localized electrons with an areal density of 5� 1017 m�2. We show that, in the presence of potential

disorder at the metal-insulator interface, some of the metal-induced gap states become localized and

produce local moments. A modest level of disorder yields the observed areal density.
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Well below 1 K, low-transition temperature supercon-
ducting quantum interference devices [1] (SQUIDs) ex-
hibit magnetic flux noise [2] with a temperature-
independent spectral density scaling as 1=f�, where f is
frequency and 0:6 � � � 1. The noise magnitude, a few

��0 Hz�1=2 at 1 Hz (�0 is the flux quantum), scales
slowly with the SQUID area, and does not depend signifi-
cantly on the nature of the thin-film superconductor or the
substrate on which it is deposited. The substrate is typically
silicon or sapphire, which are insulators at low temperature
(T) [2]. Flux noise of similar magnitude is observed in flux
[3,4] and phase [5] qubits. Flux noise limits the decoher-
ence time of superconducting, flux sensitive qubits making
scale-up for quantum computing problematic. The near
insensitivity of noise magnitude to device area [2,5,6]
suggests the origin of the noise is local. Koch et al. [7]
proposed a model in which electrons hop stochastically
between traps with different preferential spin orientations.
A broad distribution of time constants is necessary to
produce a 1=f power spectrum [8,9]. They found that the
major noise contribution arises from electrons above and
below the superconducting loop of the SQUID or qubit
[5,7], and that an areal density of about 5� 1017 m�2

unpaired spins is required to account for the observed noise
magnitude. De Sousa [10] proposed that the noise arises
from spin flips of paramagnetic dangling bonds at the
Si-SiO2 interface. Assuming an array of localized elec-
trons, Faoro and Ioffe [11] suggested that the noise results
from electron spin diffusion. Sendelbach et al. [12] showed
that thin-film SQUIDs are paramagnetic, with a Curie
(1=T) susceptibility. Assuming the paramagnetic moments
arise from localized electrons, they deduced an areal den-
sity of 5� 1017 m�2. Subsequently, Bluhm et al. [13] used
a scanning SQUID microscope to measure the low-T para-
magnetic response of (nonsuperconducting) Au rings de-
posited on Si substrates, and reported an areal density of
4� 1017 m�2 for localized electrons. Paramagnetism was
not observed on the bare Si substrate.

In this Letter we propose that the local magnetic mo-
ments originate in metal-induced gap states (MIGS) [14]
localized by potential disorder at the metal-insulator inter-
face. At an ideal interface, MIGS are states in the band gap
that are evanescent in the insulator and extended in the
metal [14] (Fig. 1). In reality, at a nonepitaxial metal-
insulator interface there are inevitably random fluctuations
in the electronic potential. The MIGS are particularly
sensitive to these potential fluctuations, and a significant
fraction of them—with single occupancy—becomes
strongly localized near the interface, producing the ob-
served paramagnetic spins. Fluctuations [15] of these local
moments yield T-independent 1=f flux noise.
To illustrate the effects of potential fluctuations on the

MIGS we start with a tight-binding model for the metal-
insulator interface, consisting of the (100) face of a simple-
cubic metal epitaxially joined to the (100) face of an
insulator in a CsCl structure [Fig. 2(a)]. For the metal we
assume a single s orbital per unit cell and nearest-neighbor
(NN) hopping. For the insulator we place an s orbital on
each of the two basis sites of the CsCl structure and assume
both NN and next-nearest-neighbor (NNN) hopping. The
parameters are chosen so that the metal s orbitals are at
zero energy and connected by a NN hopping energy of
�0:83 eV. The on-site energy of the orbitals on the Cs and

FIG. 1 (color online). (a) Schematic density of states.
(b) MIGS at a perfect interface with energy in the band gap
are extended in the metal and evanescent in the insulator.
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Cl sites is taken to be �4 and 2 eV, respectively, and both
the NN and NNN hopping energies are set to �0:5 eV.
These parameters yield a band width of 10 eV for the
metal, and 8 and 4 eV band widths, respectively, for the
valence and conduction bands of the insulator with a band
gap of 2 eV [Fig. 2(d)]. These band structure values are
typical for conventional metals and for semiconductors and
insulators. For the interface we take the hopping energy
between the metallic and insulating atoms closest to the
interface to be �0:67 eV, the arithmetic mean of �0:83
and �0:5 eV.

The electronic structure of the ideal metal-insulator
junction is calculated using a supercell [16] containing
20� 20� 20 metal unit cells and 20� 20� 20 insulator
unit cells, a total of 24 000 atoms. The total density of
states (DOS) of the supercell [Fig. 2(e)] shows a nearly flat
DOS in the band gap region. The states in the insulator
band gap are MIGS that are extended in the metal, decay-
ing rapidly away from the interface into the insulator. Our
model with a lattice constant of 0.15 nm yields an areal
density of states for the MIGS of about 3�
1018 eV�1 m�2, consistent with earlier self-consistent
pseudopotential calculations [17].

To mimic the effects of interfacial randomness, we al-
low the on-site energy to fluctuate for both metal and
insulator atoms near the interface [18]. Specifically we

assume an energy distribution PðEÞ ¼ ð1= ffiffiffiffiffiffiffi
2�

p
�Þ�

exp½�ðE� E0Þ2=2�2�, where E0 is the original on-site

energy without disorder, and � is the standard deviation.
We characterize the degree of disorder by the dimension-
less ratio R ¼ 2�=W, where W is the bandwidth of the
metal. For those MIGS that become localized, the energy
cost, Ui, for double occupation is large, and we cannot use
a noninteracting electron approach. Instead we adopt a
strategy similar to that used by Anderson in his calculation
of local moment formation [19]. We separate the space
near the interface into three regions: (i) the perfect metal
region (M), (ii) an interfacial region consisting of 2 layers
of metal unit cells and 2 layers of insulator unit cells (D)
[Fig. 2(b)], and (iii) the perfect insulator region (I). Region
(ii) is analogous to the impurity in Anderson’s analysis.
We first compute the single-particle eigenstates, ’iðrÞ,

of region D in isolation. For each of these states, we
compute Ui (using a long-range Coulomb potential with
an on-site cutoff of 10 eV) and the hybridization energy �i

due to hopping to the metal and the insulator [20]. With the
computed values of Ui and �i, we solve Anderson’s equa-
tion for the spin-dependent occupation for each localized
state j ii:

hni;�i ¼ 1

�

Z EF

�1
dE0 �i

ðE0 � Ei;�Þ2 þ �2
i

: (1)

Here, Ei;� ¼ Ei þUihni;��i and � is the spin index. The

net moment associated with the state is given by mi ¼
�Bjhni;�i � hni;��ij. Equation (1) and the associated ex-

pression for the net moment of the localized states are
calculated within the self-consistent Hartree-Fock approxi-
mation [19]. An mi � 0 solution is obtained only when
Ui=ðEF � EiÞ exceeds a critical value which depends on
�i=ðEF � EiÞ. In the large Ui limit, it is more appropriate
to start from the weak coupling limit (�i ¼ 0), where the
localized state is populated by a single electron, and treat
�i as a perturbation. By calculating the areal density of
such moment-bearing localized states we estimate the
density of spin- 12 local moments.

Figure 3 shows the calculated distribution �ðE;UÞ in the
isolated interfacial region for R ¼ 0:05, 0.1, 0.15, 0.2, 0.25,
and 0.3; for each value, higher values of U correspond to
more localized states. As expected we see that, for any
given degree of randomness, the states with energy inside
the insulator band gap (the MIGS) or those at the band
edges are most susceptible to localization. Figure 4 shows a
perspective plot of the charge density of two states, with
high and low values ofUi, showing the correlation between
the degree of wave function localization and the value of
Ui. Both states are centered in the insulator, a general
characteristic of localized states in the band gap originating
from the MIGS.
Setting the Fermi energy at the insulator midgap value,

we estimate the areal density of spins for a given degree of
randomness R. The top panel in Fig. 5 depicts the distri-
bution �ðE;mÞ of the spin moments as a function of energy.
We see that for small R virtually all the local moments are

FIG. 2 (color online). (a) The metal (M) has a simple-cubic
structure with one atom per unit cell and the insulator (I) a CsCl
structure with two atoms per unit cell. (b) Interfacial region (D)
consists of 2 layers of metal unit cells and 2 layers of insulator
unit cells. The lattice constant is 0.15 nm. Computed DOS with
Fermi energy (dotted red line) set to zero. (c) Typical metal with
10 eV bandwidth. (d) Typical insulator with a 2 eV band gap
separating two bands of about 8 and 4 eV. (e) Metal-insulator
interface with MIGS in the band gap of the insulator due to the
presence of the metal.
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derived from the MIGS. The bottom panel of Fig. 5 shows
the calculated areal density of local moments versusR. Our
simple model thus indicates that moderate potential fluc-
tuations (R� 0:15) at the interface produce an areal den-
sity of localized moments comparable to experimental
values [21]. Although our analysis is for a specific model,
we expect the general physical picture to remain valid for

real materials. First, the formation of MIGS at a metal-
insulator interface is universal, and their areal density is
rather insensitive to the nature of the materials as discussed
in the supplementary material [20] and shown numerically
in Ref. [17]. Second, the formation of local moments from
the combination of localized states and Coulomb interac-
tion is a general phenomenon [19]. We also note that our
analysis should not be significantly modified when the
metal is superconducting. This is because the Ui for the
localized states is generally much greater than the pairing
gap. Of course, extended states with negligible Ui would
be paired.
Given our picture of the origin of the localized spin- 12

moments, how do they produce 1=f flux noise with a
spectral density S�ðfÞ / 1=f�? The local moments inter-
act via mechanisms such as direct superexchange and the
RKKY interaction [11,23–25] between themselves, and
Kondo exchange with the quasiparticles in the supercon-
ductor. This system can exhibit a spin-glass transition [26],
which could account for the observed susceptibility cusp
[12] near 55 mK. For T > 55 mK, however, experiments
suggest that the spins are in thermal equilibrium [27] and
exhibit a 1=T (Curie law) static susceptibility [12,13]. In
this temperature regime, for hf � kBT standard linear

FIG. 3 (color online). Density of states distribution �ðE;UÞ as
a function of energy E and Hubbard energy U for 6 values of the
randomness parameter R in the isolated D region of Fig. 2. For a
given value of R, the highest values of U, resulting in the most
highly localized states, appear in the band gap of the insulator
and at the band edges. The position of the insulator band gap is
represented by black dashed lines.

FIG. 4 (color online). Perspective view images of the two-
dimensional probability density distribution at the interfacial
region (D) along directions parallel to the interface (x and y
directions), integrated along the z direction. (a) States with Ui ¼
3:25 eV and Ei ¼ �0:24 eV and (b) with Ui ¼ 0:35 eV and
Ei ¼ �0:23 eV, respectively.

FIG. 5 (color online). (a) Electron density distribution �ðE;mÞ
for 6 values of R. We simulated 5000 different configurations of
disorder for each value of R. The position of the insulator band
gap is represented by black dashed lines. Virtually all the
magnetic moments are from the MIGS in the band gap of the
insulator. (b) Integrated spin density versus randomness parame-
ter R. For R ¼ 0:05, we estimate the spin density to be less than
0:01� 1017 m�2.
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response theory [28] shows that the imaginary part of the
dynamical susceptibility �00ðf; TÞ ¼ Aðf; TÞðhf=kBTÞ.
Here, Aðf;TÞ/P

�

P
�;�P��ðhfþE��E�Þjh� jS� j�ij2,

where S� is the�th component of the spin operator, � and

� label the exact eigenstates, and P� is the Boltzmann
distribution associated with state �. Combining the above
result with the fluctuation-dissipation theorem [15] which
relates the flux noise to �00ðf; TÞ, namely S�ðf; TÞ /
ðkBT=hfÞ�00ðf; TÞ, we conclude that the observed 1=f�

spectral density implies Aðf; TÞ / 1=f�ð0:6 � � � 1Þ.
Assuming low frequency contributions dominate the
Kramers-Kronig transform, this result is consistent with
the observed 1=T static susceptibility, and the recent mea-
surement [29] showing that flux noise in a SQUID is highly
correlated with fluctuations in its inductance, However,
without knowing the form of the interaction between
the spins, one cannot derive this behavior for Aðf; TÞ
theoretically.

In conclusion, we have presented a theory for the origin
of the localized magnetic moments which have been shown
experimentally to give rise to the ubiquitous low-T flux
1=f noise observed in SQUIDs and superconducting qu-
bits. In particular we have shown that for a generic metal-
insulator interface, disorder localizes a substantial fraction
of the metal-induced gap states (MIGS), causing them to
bear local moments. Although MIGS have been known to
exist at metal-insulator interfaces for three decades, we
believe this is the first understanding of their nature in the
presence of strong local correlation and disorder. Provided
T is above any possible spin-glass transition, experiments
show that fluctuations of these local moments produce a
paramagnetic �0 and a power-law, f-dependent �00 which
in turn leads to flux 1=f noise. It is important to realize that
localized MIGS occur not only at the metal-substrate inter-
face but also at the interface between the metal and the
oxide that inevitably forms on the surface of superconduct-
ing films such as aluminum and niobium. There are a
number of open problems, for example, the precise inter-
action between the local moments, its relation to the value
of �, and the possibility of a spin-glass phase at low
temperature. A particularly intriguing experimental issue
to address is why different metals and substrates evidently
have such similar values of R, around 0.15. Experimentally,
to improve the performance of SQUIDs and superconduct-
ing qubits we need to understand how to control and reduce
the disorder at metal-insulator interfaces, for example, by
growing the superconductor epitaxially on its substrate.
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