
Fractional Topological Insulators

Michael Levin1,2 and Ady Stern3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, University of California, Santa Barbara, California 93109, USA

3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 19 June 2009; published 4 November 2009)

We analyze generalizations of two-dimensional topological insulators which can be realized in

interacting, time reversal invariant electron systems. These states, which we call fractional topological

insulators, contain excitations with fractional charge and statistics in addition to protected edge modes. In

the case of sz conserving toy models, we show that a system is a fractional topological insulator if and

only if �sH=e
� is odd, where �sH is the spin-Hall conductance in units of e=2�, and e� is the elementary

charge in units of e.
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Introduction.—Recently, it was realized that in two di-
mensions there are two distinct universality classes of time
reversal invariant band insulators—topological insulators
and trivial insulators [1,2]. The two kinds of insulators can
be distinguished by the fact that the edge of a topological
insulator contains a protected pair of gapless edge modes
of opposite chiralities, while no such protected edge modes
exist for a trivial insulator. Indeed, such a protected edge
mode has been observed in HgTe quantum wells [3].

In interacting electron systems, many other gapped,
charge-conserving electronic ground states are possible
in addition to band insulators. It is natural to wonder if
analogues of topological and trivial insulators exist for
these more general states. That is, do some of these states
have time reversal protected edge modes, while some do
not? This is the issue we investigate in this Letter.

Our starting point is the standard toy model construction
of topological insulators [1,2]. In this construction, one
imagines a two-dimensional system of electrons in the
continuum where the electrons experience a spin-
dependent magnetic field B0ẑ�z. (In a more realistic con-
text, this kind of physics can originate from spin-orbit
coupling) [1,2]. One then assumes that the electrons are
noninteracting and that the electron density is tuned to an
integer Landau filling � ¼ k. The ground state is thus made
up of two decoupled spin species which form integer
quantum Hall states with opposite chiralities. One can
show that when k is odd, this state is a topological insula-
tor, when k is even it is a trivial insulator.

A simple way to generalize this construction is to imag-
ine that the two spin species each form fractional quantum
Hall (FQH) states. Such states can be realized in a toy
model similar to the one described above. The only new
element is that one introduces a toy electron-electron
interaction where electrons of the same spin interact via
a short-range two-body repulsive force, and electrons of
different spin do not interact at all. This system can then be
mapped onto two decoupled FQH systems of the same
filling factor and opposite magnetic field [4]. Depending

on the electron density and the details of the electron
interaction, one can engineer scenarios where each spin
species forms arbitrary FQH states.
In this Letter, we study the properties of these states and

their stability to perturbations. We leave the analysis of
their experimental feasibility to future work. Such states
were considered by Bernevig et al. in the context of the
fractional quantum spin-Hall effect [2]. Here, we show that
these states are interacting analogues of topological or
trivial insulators: some of these states, which we dub
‘‘fractional topological insulators’’, have time reversal
protected edge modes and some, which we dub ‘‘fractional
trivial insulators’’, do not. We find that a state is a fractional
topological insulator if and only if the integer parameter
�sH=e

� is odd, where �sH is the spin-Hall conductance
measured in units of e=2�, and e� is the elementary charge
(e.g. smallest charge of any quasiparticle excitation), mea-
sured in units of e. This result is quite general and holds for
any sz conserving model.
We also show that every fractional trivial insulator with

1=e� odd has a ‘‘partner’’ fractional topological insulator
which is adiabatically equivalent to it in the absence of
time reversal symmetry. On the other hand, when 1=e� is
even, we find that fractional topological insulators are not
possible at all (at least for the models described above). In
the course of analyzing this case, we derive a result about
general electronic FQH states which may be useful in its
own right: we show that if 1=e� is even then �xy=e

� must

also be even. One implication is that if �xy ¼ 1=2 then e�

is at most 1=4. Note that there are no such restrictions on
the charge of the lowest energy excitation; in principle this
can be any multiple of e�.
An interesting example where our results are applicable

occurs in the case where the two spin species each form
� ¼ 1=2 FQH states. More specifically, consider the six
possibilities corresponding to the Pfaffian state [5], strong-
pairing state [6], 331 state [6,7], and their particle-hole
conjugates. These 6 states all have different edge struc-
tures—some states have one chiral boson mode (strong-
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pairing), some have two (331 and anti-strong-pairing),
some have three (anti-331), and some have Majorana
modes (Pfaffian and anti-Pfaffian) [8]. One might guess
that some of these states are fractional topological insula-
tors—for example, those with an odd number of chiral
boson edge modes. However, this is not the case; these
states all have �sH ¼ 1=2, e� ¼ 1=4, so that �sH=e

� is
even. In fact, this is true for any � ¼ 1=2 state.

Flux insertion argument.—We derive the above criterion
using a generalization of the flux insertion argument of Fu
et al. [9] We first review this argument in the case of the
above noninteracting toy model. Consider a cylindrical
geometry, and assume that the number of electrons is
even. In addition, assume that the ground state is time
reversal invariant when there is zero flux through the
cylinder. Under these assumptions, Fu et al. argued that
there must be at least one low-lying excited state if k is
odd—even in the presence of an arbitrary time reversal
invariant perturbation. To see this, start with the ground
state of the toy model at zero flux and imagine adiabati-
cally inserting half of a flux quantum �0=2 through the
cylinder. Let us call the resulting state�1. Similarly, let�2

be the state obtained by adiabatically inserting��0=2 flux
through the cylinder. The state �2 can be transformed into
�1 by inserting a full flux quantum—an operation which
transfers k electrons with spin-up from the left edge to the
right edge, and k electrons with spin-down from the right
edge to the left edge. In particular, this means that the two
states are orthogonal. On the other hand, �1, �2 have the
same energy since they are time-reversed partners: �2 ¼
T�1. Thus, the system with half of a flux quantum has a
degenerate, low-lying eigenstate. The key point is that this
degeneracy is robust against arbitrary time reversal invari-
ant perturbations if k is odd. The reason is that when k is
odd, there are an odd number of unpaired electrons local-
ized near each of the two edges of�1,�2. Thus, as long as
the edges are well separated, Kramer’s theorem guarantees
that �1, �2 are degenerate (and in fact there must be two
other degenerate states, in addition). The claim now fol-
lows: the robust degeneracy at half of a flux quantum
implies that there is also a robust low-lying excited state
at zero flux (since the insertion of half of a flux quantum
cannot close a gap).

We now generalize this argument to the interacting toy
models described above (or more generally, any sz and
charge-conserving system). The crucial difference with the
noninteracting case is that in the more general case the
ground state may have topological order. The presence of
nontrivial topological order means that in a cylindrical
geometry there are always at least a finite number of
low-lying states—even if the edge is gapped [10]. These
low-lying states belong to different topological sectors and
can be distinguished from one another by measuring the
Berry phase associated with moving a quasiparticle around
the cylinder. Thus, to show that the edge is gapless in the
general case, it is not enough to just establish that there are
low-lying states at zero flux; we have to show that there are

low-lying states in the same topological sector as the
ground state.
Because we need to establish this stronger claim, the

generalized flux insertion argument begins by inserting not
��0=2 flux but �N�0=2 flux where N is the smallest
integer such that the resulting states�1,�2 are in the same
topological sector. The argument then proceeds as before.
One notes that�1 can be obtained from�2 by transferring
N�sH spin-up electrons from the left edge to the right edge
and N�sH spin-down electrons from the right edge to the
left edge. If N�sH is odd, then there is a Kramers degen-
eracy associated with each edge. In this case, the degener-
acy between�1,�2 (and the two other states) is stable and
cannot be split by any time reversal invariant perturbation.
Since �1, �2 are in the same topological sector, we con-
clude that there must be at least one low-lying state at zero
flux in the same sector as the ground state. Hence the edge
cannot be gapped out by any time reversal invariant
perturbation.
To complete the argument, we need to determine the

integer N. To this end, note that N can be equivalently
defined as the minimal number of flux quanta that need to
be inserted to go from an initial state to a final state in the
same topological sector. It is easy to see that adiabatically
inserting N flux quanta changes the Berry phase associated
with braiding a quasiparticle around the cylinder by

�� ¼ 2�Nq; (1)

where q is the charge of the quasiparticle (in units of e). In
order for the initial and final states to be in the same
topological sector, �� must be a multiple of 2� for every
quasiparticle. Thus, the minimal value ofN is 1=e�, with e�
the charge of the smallest charged quasiparticle. Using this
value of N in the above argument, we derive the above
criterion that there is a protected edge mode whenever
�sH=e

� is odd.
Microscopic analysis.—While the flux insertion argu-

ment proves that there is a protected edge mode whenever
�sH=e

� is odd, it does not prove that the edge modes can
be gapped out when �sH=e

� is even. In order to fill in
this gap, and also to show that the two degenerate states
from the argument are part of a gapless mode, we now
rederive the criterion using a microscopic approach. We
focus on the Abelian case for simplicity. In general, the
edge of an Abelian FQH state is described by a Lagrangian
density [11]

Lcð�;K;V; tÞ ¼ 1

4�
ðKij@x�i@t�j � Vij@x�i@x�j

þ ���ti@��iA�Þ: (2)

Here,� is anN-component vector of fields,K is theN � N
K matrix, V is the velocity matrix, t is the charge vector,
and A� is the external vector potential. We use a normal-

ization where electron creation operators are of the form

ei�ðlÞ with �ðlÞ � lTK� and l an integer valued N dimen-
sional vector satisfying lTt ¼ 1.
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For the time reversal symmetric systems that we study,

there are N fields �"
i, �

#
i for each spin direction and the

Lagrangian density is of the form

L ¼ Lcð�";K;V; tÞ þ Lcð�#;�K;V; tÞ: (3)

The Lagrangian (3) has 2N gapless edge modes,N for each
chirality. Our goal is to find the conditions under which
these modes can be gapped out by charge-conserving, time
reversal symmetric perturbations. The question we ask is a
question of principle, and therefore we will not discuss
whether particular terms exist in realistic conditions. We
also will not impose a requirement of momentum or spin
conservation on the terms we study, since both momentum
and spin may be exchanged with impurities or an under-
lying lattice.

The creation operators for electrons of the two spin

directions are ei�
"ðlÞ and e�i�#ðlÞ with �"ðlÞ, �#ðlÞ defined as

above. We use the convention that the fields transform
under time reversal as �" ! �#, �# ! �" � �K�1t. This
guarantees that electron creation operators transform as

c y
" ! c y

# , c
y
# ! �c y

" .
It is convenient for us to define a 2N-dimensional vector

� ¼ �"
�#

� �
;

a 2N � 2N K matrix

K ¼ K 0
0 �K

� �

and a charge vector

� ¼ t
t

� �
:

Also, let

�x ¼ 0 1
1 0

� �

and

�z ¼ 1 0
0 �1

� �
;

where 1 is the N-dimensional unit matrix. In this notation,
a generic charge-conserving scattering term is of the form

UðxÞei�ð�Þ þ H:c:, where �ð�Þ � �TK�, and � is a
2N-dimensional integer valued vector satisfying �T� ¼
0. The field � transforms under time reversal as

T �ð�ÞT �1 ¼ �ð��x�Þ �Qð�Þ�; (4)

where Qð�Þ � 1
2�

T�z� is the number of spins flipped by

�. Thus, one can construct scattering terms that are
even/odd under time reversal by taking

U� ¼ UðxÞ½cosð�ð�Þ � 	ðxÞÞ
� ð�1ÞQ cosð�ð�x�Þ þ 	ðxÞÞ�: (5)

Single particle terms (Q ¼ 1) can arise from either a
Zeeman interaction with a magnetic field in the xy plane, or

a spin-orbit interaction. A Zeeman interaction—which is
odd under time reversal—generates terms of the form
UZðxÞ cosð�ð�ZÞ þ 	ðxÞÞ, with Qð�ZÞ ¼ 1 and �x�Z ¼
��Z. For large UZ with appropriate spatial dependence,
this term introduces a mass term to �. Including all the
possibilities for �, such an interaction is sufficient to gap
all the edge modes. On the other hand, a spin-orbit cou-
pling—which does not break time reversal symmetry—
generates two other kinds of terms. The first type scatters
an electron from an edge mode to its time-reversed partner.
It is of the form UsoðxÞ@t�cosð�þ 	ðxÞÞ. This term can-
not gap any modes as it is a complete time derivative. The
second type is of the form Uþ of (5), again with Q ¼ 1.
Such terms can gap out modes (but not all of them, if the
system is a topological insulator). Terms that flip two spins
can arise from time reversal symmetric electron-electron
interactions. Although not easily realized, similar terms
flipping more than two spins can also occur in principle.
We now examine whether a time reversal symmetric

perturbation of the type (5) can gap the spectrum without
spontaneously breaking time reversal symmetry. We focus
on the cases N ¼ 1, 2—the analysis for larger N is similar.
In the single edge mode case, N ¼ 1, we have �sH=e

� ¼ 1
for allK. Thus, according to the flux insertion argument, no
gap can be opened without breaking time reversal symme-
try in any of these states. To see this microscopically, note
that the only charge-conserving vectors are of the form
� ¼ ðn;�nÞ. The corresponding perturbation is even
under time reversal for even n and odd for odd n. Thus,
perturbations of the formUþ of (5) require even n, say n ¼
2. For large U, such a perturbation can open a gap in the
spectrum. However, hand in hand with that it also sponta-
neously breaks time reversal symmetry: when U is large,
the operator cos½ ee� ð�"ðxÞ þ�#ðxÞÞ�, which corresponds to

n ¼ 1 and is odd under time reversal, acquires a nonzero
expectation value. Hence, it is impossible to gap the two
edge modes without breaking time reversal symmetry,
explicitly or spontaneously.
The case N ¼ 2 is a bit more complicated. In this case,

the two pairs of counter-propagating edge modes can be
gapped if one can find two linearly independent charge-
conserving four-component integer vectors �1, �2 such
that (a) �1 ¼ ��x�2 and (b) �T

1K�1 ¼ �T
2K�2 ¼

�T
1K�2 ¼ 0. Here, the second condition is simply

Haldane’s criterion for gapping out FQH edge modes
[12]. It guarantees that one can make a linear change of
variables from � to �0 such that the action for �0 will be
that of two decoupled nonchiral Luttinger liquids. The two
terms in (5) will then gap the spectrum of these two liquids
by freezing the values of �ð�1Þ and �ð�2Þ.
In some cases, this freezing of these values can lead to a

spontaneous breaking of time reversal symmetry. As in the
N ¼ 1 case, this can happen if the perturbation fixes the
value of�ð�Þwhere� is nonprimitive—e.g., a multiple of
an integer valued vector. Then an operator of the form U�
of (5) may acquire an expectation value.
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We now turn to search for �1 and �2. It is convenient to
work in a basis where all four components of the charge
vector are 1. We can parameterize the matrix K as

K ¼ bþ us b
b bþ vs

� �
(6)

with b, u, v, s integers and u and v having no common
factor. In terms of these parameters, the spin-Hall conduc-
tance is ðuþ vÞ=½ðuþ vÞbþ uvs� and the elementary
charge is 1=½ðuþ vÞbþ uvs�. Their ratio is then ðuþ
vÞ, so according to the flux insertion argument the parity
of uþ v determines whether the spectrum can be gapped.

When uþ v is odd, it is indeed impossible to find �1,
�2 that satisfy (a), (b) and do not spontaneously break time
reversal symmetry. Imagine one had such a solution and
define �� ¼ �1 ��2. Then, �x�� ¼ �� and Qð��Þ ¼
0 so �T� must be an integer multiple of (1, �1, 1, �1).
Also, �x�þ ¼ ��þ and �T�K�þ ¼ 0 so �Tþ must
be an integer multiple of (v, u, �v, �u). But
cosð�ðv; u;�v;�uÞÞ is odd under time reversal. This
means that the scattering term corresponding to �1, �2

will spontaneously break time reversal symmetry.
On the other hand, when uþ v is even (so that both

u, v are odd), this analysis suggests an obvious solution
(�1, �2). We can take �T� ¼ ð1;�1; 1;�1Þ, �Tþ ¼
ðv; u;�v;�uÞ, so that

�T
1 ¼ 1

2ð1þ v;�1þ u; 1� v;�1� uÞ (7)

and �2 ¼ ��x�1. Note that the scattering terms corre-
sponding to �1, �2 flip the spins of ðvþ uÞ=2 electrons so
at second order they flip ðuþ vÞ electrons—precisely the
number needed to connect the two degenerate states dis-
cussed in the flux insertion argument.

Partner states.—Now that we have derived the �sH=e
�

criterion using two different approaches, we return to ask
whether the imposition of time reversal symmetry gener-
ally causes each interacting universality class to split into
two (or more) subclasses, as it does in the noninteracting
case. Equivalently, does each fractional topological insu-
lator have a partner fractional trivial insulator (and vice
versa) which can be adiabatically connected to it in the
absence of time reversal symmetry?

The answer to this question depends on the parity of
1=e� (at least for the models analyzed here). When 1=e� is
odd, a partner state �0 may be constructed for an arbitrary
sz conserving fractional topological or trivial insulator �.
Let �0 be a decoupled bilayer state, where one layer is the
original state �, and the other layer is a noninteracting, sz

conserving, topological insulator with spin-up or spin-
down electrons at � ¼ �k (k odd). Clearly the spin-Hall
conductance of�0 is given by�0

sH ¼ �sH þ kwhere�sH is
the spin-Hall conductance of �. Also, the elementary
charge is the same as �: e0� ¼ e�. Combining these two
relations, we see that �0

sH=e
0� ¼ �sH=e

� þ k=e�. Since k,
1=e� are odd, �0

sH=e
0� has the opposite parity from �sH=e

�.
Hence �0 has a protected edge mode if and only if� does

not. On the other hand, it is clear that �, �0 are adiabati-
cally equivalent in the absence of time reversal symmetry
since this is true for noninteracting topological or trivial
insulators. We conclude that�0 is indeed a partner state to
�. Thus, the universality classes with 1=e� odd split into
(at least) two subclasses when time reversal symmetry is
imposed.
In contrast, we now show that for an even 1=e� there are

no fractional topological insulators (at least for the models
analyzed here), since �sH=e

� is necessarily even. For sim-
plicity we prove the analogous statement for quantum Hall
states, e.g. 1=e� even implies �xy=e

� even. Imagine adia-

batically inserting N ¼ 1=e� flux quanta at a point z0. As a
consequence, a quasiparticle excitation will be created at
z0. We can compute the statistical angle for these excita-
tions in twoways. The first way is to explicitly compute the
Berry phase associated with exchanging two excitations.
Using (1) with N ¼ 1=e� and q ¼ �xy=e

� and dividing the
result by 2 since we are interested in an exchange rather
than a 2� braiding, the Berry phase is

� ¼ �
1

e�
�xy

e�
: (8)

Note that the coefficient of � is a product of an integer
�xy=e

� and an even integer 1=e�. The Berry phase is thus a
multiple of 2�—implying that the particles are bosons. On
the other hand, this quasiparticle excitation is made up of
�xy=e

� electrons. We conclude that �xy=e
� is even.

Summary of results.—In this Letter, we have shown that
an sz conserving model is a fractional topological insulator
if and only if �sH=e

� is odd, where �sH is the spin-Hall
conductance (in units of e=2�) and e� is the elementary
charge (in units of e).
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