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We theoretically study the phase of the reflection amplitude of an electron (massive Dirac fermion) at a

lateral potential step in Bernal-stacked bilayer graphene. The phase shows an anomalous jump of �, as the

electron incidence angle (relative to the normal direction to the step) varies to pass ��=4. The jump is

attributed to the Berry phase associated with the pseudospin-1=2 of the electron. This Berry-phase effect is

robust against the band-gap opening due to the external electric gates generating the step. We propose an

interferometry setup in which collimated waves can be generated and tuned. By using the setup, one can

identify both the � jump and the collimation angle.
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Introduction.—Monolayer graphene has attracted much
attention due to potential application of its unusual prop-
erties [1]. Its low-energy quasiparticles are massless Dirac
fermions. They show Klein tunneling [2], anomalous quan-
tum Hall effects [3,4], electron optics behavior such as
focusing [5] and collimation [6–9], etc. The Klein tunnel-
ing is understood by the chirality of the quasiparticles [2],
or equivalently by Berry phase [10,11]. There have been
experimental efforts to observe it in a bipolar junction
[12,13] and in an interferometry [14].

Bilayer graphene has properties quite different from the
monolayer. For example, in Bernal-stacked bilayer, low-
energy quasiparticles are massive Dirac fermions [15].
There have been studies on bilayer-graphene Klein effects
[2], quantum Hall effects [16], band-gap engineering
[15,17–20], etc. However, more studies on the bilayer
may be necessary for the understanding of the features of
the massive Dirac fermions such as their transport related
with Berry phase [16,21] and collimation [2].

In this Letter, we theoretically study the reflection of a
low-energy electron at a lateral potential step of monopolar
(p-p or n-n) type in Bernal-stacked bilayer graphene
[Fig. 1(a)]. The phase of the reflection amplitude is found
to show anomalous behavior, as the electron incidence
angle �1 (relative to the normal direction to the step) varies.
It shows an abrupt jump of � at �1 ¼ ��=4 when the step
height is much smaller than the kinetic energy of the
electron. Based on a reversal symmetry [Eq. (2)], we
attribute the � jump to the Berry phase associated with
the pseudospin-1=2 of the electron. The jump becomes
gradual, as the step height increases, due to the evanescent
waves existing at the step boundary and breaking the
reversal symmetry. We show that the phase jump can be
detected in an interferometry setup [Fig. 1(b)]. We remark
that the phase jump is robust against the band-gap opening
due to the electric gates generating the step, and that the
setup does not require an external magnetic field, contrary
to previous works [3,4,11,14,16] for the detection of Berry-
phase effects in graphene.

Potential step.—In Bernal-stacked bilayer graphene, a
low-energy electron state �Kðx; yÞ with energy E in the K
valley is governed by Hamiltonian [15] HK�K ¼ E�K,

HK ¼v2

�
~�K � ~qþVðxÞ; ~q�ð�p2

xþp2
y;�2pxpyÞ: (1)

The two pseudospin components of�K describe the lattice
sites A1 and B2 of the bilayer, where Al and Bl denote the
two basis sites of layer l ¼ 1, 2. ~�K ¼ ð�x; �yÞ is the

pseudospin operator for the K valley, ~p ¼ ðpx; pyÞ is the
momentum relative to the valley center, � � 0:39 eV is the
interlayer coupling, v � 106 m=s, and �x;y;z are the Pauli

matrices. HK is valid for 0:002� < jE� Vj � �, where
the trigonal warping [15] is ignored. We study the K valley
only, as the K0 valley shows the same result, and ignore the
intervalley mixing as VðxÞ slowly varies on the scales of
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FIG. 1 (color online). (a) Lateral monopolar potential step in
Bernal-stacked bilayer graphene (xy plane). The arrows repre-
sent the propagation of electron waves, the dashed lines show the
boundaries between the regions with different potential strengths
Vi’s, �1ð2Þ is the propagation angle of the incident (transmitted)

wave, and ri’s (ti’s) are the reflection (transmission) amplitudes.
As �1 varies, the phase of r1 can exhibit an abrupt jump of � at
�1 ¼ ��=4, a Berry-phase effect. (b) Interferometry setup for
the detection of the � phase jump of r1, based on the interference
between the two paths drawn in x 2 ½0; ds�. To see the
incidence-angle (here, �c) dependence of r1, collimated waves
are generated from a collection of waves with different incidence
angle �unc, by using the resonant filtering due to the barrier Vc.
The collimation angle �c can be also identified, using the
interference.
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the lattice constant and @v=�. Band gap [15] due to the
gates generating VðxÞ will be considered later.

It is worthwhile to see a symmetry of HK, which has not
been discussed in the literature. HK is invariant under the
antiunitary operator � (for 0:002� < jE� Vj � �),

� ¼ i�yR ~p;��=2C; (2)

when ~p is real (which is achieved when V1 � V2 ! 0 in
Fig. 1). Here, R ~p;��=2 is the operator rotating ~p by angle

��=2 [i.e., ðpx; pyÞ ! ð�py;�pxÞ and thus ~q ! � ~q],

i�yC reverses pseudospin, and C is the complex conjuga-

tion operator. We call this invariance as reversal symmetry
hereafter, in the sense that� is exactly the same as the time
reversal operator defined for a single valley [22] if ~q is

replaced by ~p in Eq. (1). The symmetry � and the Berry
phase � [23], associated with a loop encircling once the
origin in the ~q space, can give rise to an interesting effect in
a monopolar potential step (see below). This effect corre-
sponds to the Klein tunneling in bipolar monolayer gra-
phene, which results from the time reversal symmetry and
the Berry phase � due to a ~p-space loop [10,11].
Now, we consider a potential step VðxÞ of monopolar

type, where VðxÞ ¼ V1 for x < 0 and V2 for x > 0, and
study the reflection amplitude r1 of a plane wave incom-
ing to the step with energy E and incidence angle �1
[Fig. 1(a)], where E> V1, V2 (E< V1, V2) for a n-n
(p-p) step. Because of the translational invariance along
ŷ, the wave is described by�K;ky ¼ eikyyc K;kyðxÞ. c K;kyðxÞ
is a superposition of propagating and evanescent waves [2],

eik1x x
e�i�1

�s1e
i�1

 !
þ r1e

�ik1x x
�ei�1

s1e
�i�1

 !
þ ae�1x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�1

p þ s1 sin�1

s1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�1

p � sin�1

0
@

1
A for x < 0;

t1e
ik2x x

e�i�2

�s2e
i�2

 !
þ be��2x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�2

p þ s2 sin�2

�s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�2

p � sin�2

0
@

1
A for x > 0:

Here, sj ¼ sgnðE� VjÞ, @ky ¼ s1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE� V1j�=v2

p
sin�1,

@kjx ¼ sj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE� Vjj�=v2

q
cos�j, @�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE� Vjj�=v2

q
	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin2�j

q
, j 2 f1; 2g refers to the region with Vj, and

the propagation angle �2 of the transmitted wave is gov-
erned by the conservation of py, s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE� V1j
p

sin�1 ¼
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE� V2j
p

sin�2. The coefficients r1, t1, a, and b are
determined by the continuity of c K;kyðxÞ and
dc K;kyðxÞ=dx at x ¼ 0. We introduce a parameter � �
ðV2 � V1Þ=ðE� V1Þ, the ratio of step height and the kinetic
energy of the incident wave. The following effects depend
only on � and �1, regardless of other details such as the
type (n-n or p-p) of the step.

Phase jump and Berry phase.—We examine the depen-

dence of the reflection amplitude r1 ¼ jr1jei�r1 on � and
�1 2 ½0; �=2�; r1 is an even function of �1. We first discuss
the case of j�j � 1, and then that of finite �.

For j�j � 1, the reflection phase �r1 shows an abrupt

jump of � at �1 ¼ �=4; see Fig. 2. The phase jump is
accompanied by a reflection zero, jr1j2 ¼ 0. To see the
behavior, we derive the expression of r1 near �1 ¼ �=4,

r1 ’ � cos2�1
4cos2�1

� for j�j � 1 and �1 ’ �=4: (3)

The � jump occurs, irrespective of the sign of �. And, for
j�j � 1, the evanescent waves are ignorable (jaj2, jbj2 ’
0), as shown for �1 ¼ �=4 in Fig. 3; the same occurs for
other values of �1. Below, we attribute the � jump to the
Berry phase associated with the pseudospin.
According to the Hamiltonian (1), the pseudospin cou-

ples with the vector ~q such that it is parallel (antiparallel) to
~q in the n-n (p-p) step. We follow the change of ~q, to see
the change of the pseudospin in the reflection. The vectors
~q of an incident wave�i with �1 ¼ �=4� � (where � is a
small positive angle) and the wave �f formed by the

reflection of �i at the step are drawn in Fig. 4. One can
assign a clockwise path � to the change of ~q; the choice
between clockwise and counterclockwise does not matter.
We also follow the change in the reversal-symmetric pro-
cess �� from ��f to ��i. This process is also a solution

of Eq. (1) with the same energy, since the evanescent waves
can be ignored and thus ½HK;�� ¼ 0. Notice that the
incidence angle of ��f is �=4þ �, and that � and ��

are reflection-symmetric about qy axis. As �1 ! �=4 (� !
0), the spatial propagation in the process � becomes iden-
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FIG. 2 (color online). Dependence of the reflection phase �r1
and probability jr1j2 (scaled by �2) on �1 for � ¼ �0:01 (solid),
�0:1 (dashed), and �0:5 (dotted). Around �1 ¼ �=4, �r1 shows

a jump of �, accompanied by jr1j2 ¼ 0.
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FIG. 3. Dependence of the probabilities jaj2 and jbj2 of the
evanescent waves on � at �1 ¼ �=4.
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tical to that in ��. However, at �1 ¼ �=4, the change of
the pseudospin in the � process differs from that in �� by
2� rotation, i.e., the difference �� �� forms a loop
encircling once the origin of the ~q space. The resulting
Berry phase � gives rise to the abrupt jump in �r1 .

We next discuss the case of finite�. As j�j increases, the
abrupt jump of �r1 at �1 ¼ �=4 becomes gradual [Fig. 2].

This is due to the evanescent waves localized at the step
boundary x ¼ 0, which become to affect the reflection as
j�j increases [Fig. 3], and break the reversal symmetry �;
for example, a wave �j� i�j; kyi / jky;�i�ji, reversal
symmetric to an evanescent wave j� i�j; kyi, is physically
meaningless, as it diverges in ŷ direction. For �1 ’ �=4
and small j�j, we derive
d�r1
d�1

’ �ð ffiffiffi
3

p
�=12Þ

ð�1 � �=4þ �=4Þ2 þ ð ffiffiffi
3

p
�=12Þ2 þOð�3Þ; (4)

which shows that the (gradual) jump of �r1 occurs around a

shifted angle �1 ¼ ð�� �Þ=4within ffiffiffi
3

p j�j=12. For j�j *
1, �r1 increases only gradually. Any bipolar step does not

show the phase jump, as it has j�j 
 1.
Interferometry.—We propose an interferometry setup for

the detection of the phase jump in �r1 [Fig. 1(b)]. In

addition to the step, it has a potential barrier Vc, which
shows transmission resonance only around some incidence
angle �c [Fig. 5(a)]. This filtering or collimation [2] is used
in our setup, to see the dependence of �r1 on the incidence

angle (now on the collimation angle �c).
We first discuss the collimation. Figure 5(a) shows the

dependence of the transmission probability T ¼ jtj2
through the setup on the incidence angle �unc of a plane
wave. Here, t is calculated in the same way as for the step,
and we choose � � ðVc � V1Þ=ðE� V1Þ 
 2, for which
there is no total reflection by the barrier for any �unc. The
collimation angle �c, at which T shows a maximum value
for a given �, is governed by the resonance condition,

2kcxdc þ ’0 ¼ 2�n (n is an integer), where kcx ¼
sckin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�� 1j � sin2�c
p

is the x̂-axis wave vector inside

the barrier, kin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijE� V1j�=ð@vÞ2

p
is the wave vector of

the incident wave, dc is the barrier width, sc ¼ sgnðE�
VcÞ, and’0 is the reflection phase at the barrier boundaries;
in our parameter range, the dependence of’0 on� and �unc
is ignorable. The collimation is mainly done in the barrier,
and negligibly affected by the step, as jr1j is small. One can
tune �c by changing �.
Because of the collimation, a wave incoming into the

step has incidence angle around �c. Its two propagation
paths in x 2 ½0; ds�, one with direct transmission and the
other with reflection once at x ¼ ds [Fig. 1(b)], result in the
interference pattern of cosð2k1xds þ �r1 þ �r2Þ as a func-

tion of ds, where @k1x ¼ s1kin cos�c and �r2 is the reflec-

tion phase at x ¼ 0 [24]; for � 
 2, �r2 changes only

gradually. From the period 	 � �=k1x and the phase shift

of the pattern, one can identify �c and the � jump of �r1 .

Based on the above idea, we analyze the conductance
G ¼ ð4e2=hÞðW=2�ÞR dkyTðkyÞ through the setup at zero

temperature and zero bias, where the factor 4 reflects the
spin and valley degeneracy, the integral is done over all the
incoming waves with the same energy E but different �unc,
andW is the transverse width of the setup. For different�’s
and thus �c’s, the interference pattern in G is shown in
Fig. 5(b), as a function of ds. The period of the pattern
agrees very well with 	 ¼ �=k1x , therefore, from the
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FIG. 5 (color online). (a) Transmission T ¼ jtj2 of a plane
wave with incidence angle �unc through the setup in Fig. 1(b),
for different �’s. T is an even function of �unc. (b) Conductance
G as a function of ds. In (a) and (b), E� V1 ¼ 0:04�, � ¼
�0:5, and dc ¼ 60l0 are chosen, while ds ¼ 60l0 only in (a).
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FIG. 4 (color online). Schematic view of the change of ~q in the
reflection process for j�j � 1. This view also shows the change
of pseudospin, since pseudospin is parallel (antiparallel) to ~q in
the n-n (p-p) step. The change from an incident wave �i (with
�1 <�=4) to its reflected wave �f is represented by �. The

change of the reversal-symmetric process from ��f (which

incidence angle >�=4) to ��i is denoted by ��. At �1 ¼
�=4, �i (�f) has the same ~q as ��f (��i), but the change of

the pseudospin in the process � differs from that in �� by 2�
rotation, resulting in the abrupt � jump (Berry phase � in the ~q
space) of the reflection phase �r1 .
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period, one can identify the collimation angle �c in experi-
ments, provided that kin is known. And, to see the � jump
of �r1 , we redraw G in Fig. 6, as a function of ds=	; the

jump is not clearly shown in Fig. 5(b), since 	 varies with
�. It shows the phase shift by � around � ¼ 4:05, where
�c ¼ 1:11�=4; the value 1:11�=4 deviates from �=4, and
the deviation roughly agrees with the deviation �=4 for
small � [see Eq. (4)]. In this way, by tuning � and thus �c,
one can observe the � jump of �r1 .

Discussion.—We include the band-gap effect �ðxÞ ¼ �i

due to the external gates creating Vi. It is described by
Hamiltonian H0

K ’ HK þ �ðxÞ�z=2 for � � �, and the
argument in Fig. 4 has to be modified since ½H0

K;�� � 0
for � � 0. According to Ref. [15], �i can be expressed,
using typical experimental parameters, as �i ’ �2
iVi,
where 
ið�iÞ ¼ 0:5ð1þ j�ijÞ=½1þ j�ij þ �2i � 0:5 lnj�ij�
and �i � Vi=�. For small� [ ’ ð�1 � �2Þ=�1], we approxi-
mately use constant 
i¼1;2 ¼ 
, since 
ið�iÞ varies slowly
enough; we later consider the dependence of 
i on �i. And,
in the limit of zero bias and zero temperature, E ’ 0. In this
regime of our interest, one can find the unitary pseudospin

rotation U satisfying UH0
KU

y ¼ ðv2=�Þ ~�K � ~Qþ VðxÞ,
where ~Q � ð ~q=j ~qjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ �2�2

i =ð2v2Þ2
q

¼ ~q=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
for

all i’s. Notice that UH0
KU

y has the same form as HK and
that ½UH0

KU
y;�� ¼ 0. Then the argument in Fig. 4 is

applicable for U�i;f and �U�i;f in the ~Q space, thus,

the abrupt � jump in �r1 is maintained and can be detected

as in Figs. 5 and 6; Eqs. (3) and (4) and Figs. 2 and 3 are not
altered, and the dependence of �c on � is modified slightly.
These features persist when we go beyond the approxima-
tion made above. For this case of 
1 � 
2, Eq. (3) is shifted
as r1 ! r1 þ �r1, where �r1 ’ �i~� sin2�1=ð4cos2�1Þ and
~� ¼ �1=½2ðE� V1Þ� � �2=½2ðE� V2Þ�. From 
ið�iÞ, we
find that �r1 is ignorable (j~�=�j & 0:1) in reasonable
ranges of j�ij< 0:2, j�j< 0:5, and jE=V2j< 0:2. This
estimation of �r1 will be modified only slightly when
two (top and bottom) gates are used to create the step
with small V1 � V2; in this general case, the above ex-
pression of 
ið�iÞmay be altered, but the expression of �r1

is still valid. Thus the � jump in �r1 is detectable in the

presence of the gap. We emphasize the central role of the ~Q
space as the parameter space for the Berry phase �.
We compare our result with the Klein effect in mono-

layer graphene. In the monolayer, it was predicted [11]
and observed [14] in an interferometry that a sign change
(� phase jump) occurs in the back-reflection amplitude.
Contrary to our bilayer case, (i) its origin is the Berry phase
� in the ~p space, (ii) it occurs at zero incidence angle, thus
an external magnetic field may be required to detect it, and
(iii) it occurs in a bipolar junction.
In summary, we find the abrupt jump � of the reflection

phase at a monopolar potential step in Bernal-stacked
bilayer graphene. The jump is the manifestation of the
reversal symmetry � and the Berry phase � in the ~Q (or
~q) space, and robust against the band-gap opening. We
propose the setup for the detection of the jump, in which
collimated waves are generated, tuned, and identified.
This work is supported by NRF (2009-0078437).
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