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We compute the interlayer bonding properties of graphite using an ab initio many-body theory. We

carry out variational and diffusion quantum Monte Carlo calculations and find an equilibrium interlayer

binding energy in good agreement with most recent experiments. We also analyze the behavior of the total

energy as a function of interlayer separation at large distances comparing the results with the predictions

of the random phase approximation.

DOI: 10.1103/PhysRevLett.103.196401 PACS numbers: 71.15.Nc, 02.70.Ss, 81.05.Uw

The excitement generated by the ability to fabricate
graphene layers and possibly to tune their electronic prop-
erties has renewed great interest in weak interactions in
graphitic systems [1]. The hope of using graphene as a
component for next generation electronics relies, among
other things, on a detailed understanding and control of
how it interacts with its surrounding (e.g., with supporting
substrates) [2].

Unfortunately the nature and strength of binding in
graphitic materials are poorly understood. For example,
large uncertainties are associated with a fundamental
physical quantity such as the strength of interlayer binding
in graphite. In addition, the way the interaction between
planes decays as a function of distance is controversial [3],
casting doubts on our current understanding of weak bind-
ing in carbon based systems. Both binding strength and
power law behavior of interlayer interactions in graphite
are relevant to the comprehension of a multitude of mate-
rials, including graphite intercalation compounds, novel
nanoelectronic components, and carbon based systems
for hydrogen storage.

From a theoretical standpoint, unravelling binding in
graphitic systems is intimately related to understanding
the role played by dispersion forces, and to acquiring the
ability to describe these purely quantum mechanical inter-
actions at a high level of accuracy. Local-density approxi-
mation (LDA) ) [4] or semilocal [5] approximations to
density functional theory (DFT) do not correctly describe
long-range correlation, due to the local character of the
exchange and correlation potential. Progress [6] has been
recently made in including dispersive interactions within a
DFT formalism, in a self-consistent, nonempirical manner
and binding between graphene layer has been predicted. In
Ref. [6] the authors report an interlayer distance overesti-
mated by 7% with respect to experiment, and a binding
energy (BE) of 45:5 meV=atom consistent with most ex-
trapolated measurements of exfoliation energy [7]. (Note
that the calculations of Ref. [6] are for two isolated gra-
phene layers, not for a graphite solid.) Semiempirical
methods [8,9] have often been used to treat dispersion
correlations where DFT energies are corrected with a con-

tribution coming from attractive C6=R
6 potentials between

pairs of nuclei. However, the power law behavior used in
empirical and semiempirical approaches to describe non-
retarded dispersion forces has been recently questioned [3].
At present, no direct measurement of graphite binding

energy is available. However, estimates based on theoreti-
cal models have been reported in the literature, using
experimental data for exfoliation energies (EE, the energy
required to remove one graphene plane from the surface of
a graphite solid). Three experiments have reported data for
EE [7,10,11], and a common aspect to the experimental
analyses is the use of simple, fitted force fields to model
either C-C or C-H interactions. The early work of Girifalco
and Lad [7] gave an EE value of 43ð5Þ meV=atom. Using a
Lennard-Jones potential, the difference between exfolia-
tion and cleavage energy (that is the interaction between
two semi-infinite crystals) was estimated to be 18%, but the
exact difference remains unknown. The work by Benedict
et al. [11] extrapolated the interaction energy between
graphite layers (33 meV=atom) from measurements on
collapsed nanotubes, using a force field to model the tube’s
elastic properties. More recently Zacharia et al. [10] per-
formed detailed desorption experiments of aromatic mole-
cules from a graphite surface. The graphite EE was derived
by extrapolating the molecules’ EE as a function of the
number of carbon atoms, thus obtaining a value of
52ð5Þ meV=atom. This yields an estimate of the cleavage
energy (62 meV=atom) which is twice as much as that
reported in Ref. [11].
Given the state of experiment and theory in determining

the binding in graphite, there is a clear need for accurate
calculations, eliminating as much as possible all approx-
imations used so far in the literature, and possibly provid-
ing guidance for future experiments. Here we report the
binding curve of graphite in AB stacking as obtained using
quantum Monte Carlo (QMC) calculations, that is a many-
body computational technique [12] capable of accounting
for dispersion forces [13,14]. We obtain an equilibrium
interlayer bond distance in satisfactory agreement with
experiment [3.426(36) Å versus 3.35 Å], and a binding
energy [15] of 56ð5Þ meV=atom, in accord with the mea-
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surements of Zacharia et al. [10]. We find that at distances
between 4 and 8 Å the total energy curve exhibits a�D�4:2

behavior as a function of interlayer spacing D, which is
very similar to that predicted by the random phase approxi-
mation (RPA) applied to two-dimensional (2D) semicon-
ducting layers [3].

In our investigation we have carried out variational
Monte Carlo (VMC) and lattice regularized diffusion
Monte Carlo (LRDMC) calculations [16] with the
TURBORVB code [17]. Our many-body wave function

(WF) is the product of a Slater determinant and a Jastrow
many-body factor. The determinant is obtained with N=2
molecular orbitals c jð ~rÞ, each doubly occupied by oppo-

site spin electrons (N is the total number of electrons). The
orbitals c jð~rÞ are expanded in a Gaussian single-particle

basis set f�ig, centered on atomic nuclei, i.e., c jð~rÞ ¼P
i�i;j�iðrÞ.
Electron correlation effects are included in our WF

through the Jastrow factor Jð~r1; . . . ; ~rNÞ ¼Q
i<j exp½fð ~ri; ~rjÞ�, where fð ~r; ~r0Þ depends only upon two-

electron coordinates. The function f is expanded in a basis
of Gaussian atomic orbitals ��i;: fð ~r; ~r0Þ ¼

P
i;jgi;j ��ið ~rÞ �

��jð ~r0Þ. The convergence of this expansion is improved by

adding an homogeneous term and a one-body contribution,
thus satisfying the electron-electron and the electron-ion
cusp conditions, respectively [14,18]. The basis set used
for the Jastrow includes 2s2p Gaussian orbitals. By opti-
mizing the coefficients gi;j, we can treat in a nonperturba-

tive way the dynamical transitions to high angular mo-
mentum atomic states for pairs of electrons localized

around each atoms. As shown for the benzene [14] and
water dimer [19], these transitions are responsible, at the
first order of perturbation theory, for the weak attractive
dispersive forces between atoms at large separation.
The molecular orbitals c j in the Slater determinant are

obtained from a self-consistent DFT-LDA calculation. One
may then optimize only the Jastrow factor, by keeping
fixed the determinant built from LDA orbitals (hereafter
referred to as the J DFT WF approach); alternatively one
may simultaneously optimize both J and the determinant
using the method described in Ref. [20]. The minimal
Gaussian basis set required to build an accurate determi-
nant was chosen by comparing graphite BEs [15] as ob-
tained using plane waves (PW) and Gaussian basis sets (see
Fig. 1). We note that at each atomic position, PW calcu-
lations are free of basis set superposition errors and they
can be converged by controlling one parameter, the kinetic
energy cutoff. In the case of Gaussian, we used an even
tempered local basis where the parameters �l and �l of the
Gaussian exponent Zi ¼ �l�

i
l of each angular momentum

l were optimized by performing a series of total energy
LDA calculations. We considered two basis sets: 4s4p2d
and 8s8p4d. For both of them we computed the BE of
graphite at the LDA level for a system of 32 atoms using
only the � point. The 8s8p4d basis set reproduces the same
BE curve obtained with PW converged with respect to the
kinetic energy cutoff (90 Ry).
In our QMC calculations we simulated a 2� 2� 1 and

2� 2� 2 supercell with periodic boundary condition,
containing 32 (128 electrons) and 64 atoms (256 elec-
trons), respectively. The carbon valence-core interaction
was described by a energy-consistent pseudopontential
[21]. In our calculations we fixed the in-plane geometry
to the one determined experimentally (C-C distance ¼
1:42 �A) [22].
In Table I we compare the results obtained by full wave

function optimization with those of the J DFT WF ap-
proach for graphite at interlayer distance D ¼ 3:7 �A. The
latter provides a reasonably accurate variational guess.
However, full optimization of the WF parameters (includ-
ing the exponent of the basis set) yields a decrease of
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FIG. 1 (color online). Binding energy (BE) curve for graphite
with AB stacking obtained at the DFT-LDA level of theory, using
plane waves (PW) and Gaussian basis sets. The results of PW
calculations (solid black line) converged as a function of the
kinetic energy cutoff (90 Ry) are in excellent agreement with
those of 8s8p4d Gaussian basis sets (red triangles), carried out
with the same cell (32 atoms and the � point). Smaller Gaussian
basis sets (4s4p2d, full circle) yield a much larger BE and a
slightly smaller equilibrium distance. Fully converged PW cal-
culations (4-atoms unit cell, 90 Ry, 20� 20� 8 k points) yield
a BE of 24 meV=atom and an equilibrium interlayer position D
of 3.30 Å. Note thatD is significantly affected by convergence as
a function of k-point sampling, while the value of the BE
depends weakly on it.

TABLE I. Variational (VMC) and diffusion (LRDMC) total
energy and energy variance (�) obtained using two different
guiding wave functions for the 2� 2� 1 supercell at a separa-
tion distance D ¼ 3:7 �A. J DFT denotes a wave function with
optimized Jastrow and a determinant part from LDA calcula-
tions. ‘‘Opt.’’ refers to the guiding wave function where both the
Jastrow factor and the orbitals were simultaneously optimized.

Basis set Method E (eV=atom) �(eV=atom)

4s4p2d Opt. VMC �154:428ð3Þ 1.79(5)

8s8p4d J DFT VMC �154:505ð1Þ 1.66(1)

8s8p4d Opt. VMC �154:540ð1Þ 1.60(1)

4s4p2d Opt. LRDMC �154:787ð8Þ � � �
8s8p4d J DFT LRDMC �154:891ð5Þ � � �
8s8p4d Opt. LRDMC �154:899ð5Þ � � �
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energy per atom of 34ð3Þ meV=atom, which is of a relevant
magnitude to the energy scale we wish to investigate in this
work. The LRDMC energy is much less sensitive to the
initial state (guiding function), used in this ground state
projection technique. In fact the optimization of Jastrow
and determinant in the guiding function leads to a consis-
tent LRDMC energy. The quantitative agreement between
the VMC and LRDMC calculations confirms that the key
ingredients of the electron correlations are already in-
cluded in our Jastrow factor. In the following the results
for the 2� 2� 1 supercell are obtained by fully optimiz-
ing the wave function, while, due to the computational cost
of the optimiziation, we will present only LRDMC calcu-
lations for the 64 atom system.

After assessing the accuracy of the guiding wave func-
tion, we considered finite-size (FS) effects. We expect the
errors due to FS effects in the in-plane directions (i.e., x
and y directions) to cancel out to a large extent [13], as we
compute energy differences between systems (graphite and
graphene) with rather similar bonding and electronic prop-
erties. In-plane FS errors arising from the kinetic and
Hartree terms (one-body corrections) can be treated within
a standard DFT approach with appropriate k-point sam-
pling. Other FS errors come from the artificial periodicity
of the exchange-correlation hole due to the periodic
Coulomb potential. Kwee, Zhang, and Krakauer (KZK)
[23] proposed to calculate the two-body corrections within
LDA where the exchange and correlation energy is re-
placed by the LDA energy parametrized for a finite system.
We applied KZK corrections as implemented in the PWSCF

code [24,25].
We cannot rely on any error cancellation in the z direc-

tion, i.e., FS errors due to a finite number of graphene
layers in the simulation cells. In addition, the KZK method
cannot provide a robust correction scheme in this case due
to the lack of long-range effects in the LDA exchange and
correlation functionals. We estimate the long-range behav-
ior of the interaction between planes by fitting the results of

calculations performed on the 2� 2� 1 supercell at dis-

tances D> 4 �A. These VMC (LRDMC) results are re-
ported in Fig. 2 and show a behavior EðDÞ �D�� with
� ¼ 4:2ð1Þ½4:2ð3Þ�. Although the LRDMC data are af-
fected by larger error bars, we can safely conclude that
� � 4. We note that using the RPA applied to 2D systems,
Dobson et al. [3] found a power law behavior �D�3 for
infinite�-conjugated layers. One does not expect to see the
asymptotic form of Ref. [3] in our work because the
unusual interaction, arising from coupling between long-
wavelength fluctuations in the plane, is expected to arise at
much larger distances than those studied here [28].
Using the power law determined in our calculation we

can derive a scaling relation between the graphite BE and
the number of layers n. Integrating over the supercell
volume we find that the total energy scales as �1=D3

max

where Dmax is the linear size of the supercell in the z
direction, i.e., as �1=n3. In Fig. 2(b) we report the BE
obtained within the LRDMC method as a function of
�1=n3. The BE curves close to the minimum for the 32
and 64 atoms cells are reported in Fig. 3. Extrapolating
the results reported in Fig. 2(b) to an infinite number of
layers, we obtain a value of the BE of 60ð5Þ meV=atom.
This is reduced to 56(5), after adding zero point motion
(�2 meV=atom) and lattice vibrational contributions at
300 K (�2 meV=atom), as computed from vibrational free
energies using the data of Ref. [29] for phonon frequencies.
Absorption experiments of aromatic molecules on

graphite [10] provide a measurement of the EE, while the
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FIG. 2 (color online). BE of graphite as a function of separa-
tion between planes (a) and of the number of layers (n) included
in the periodic cell used in our calculations (b). Note the loga-
rithmic scales. In (a) results obtained with VMC and LRDMC
calculations are reported. In (b) only LRDMC results are shown.
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FIG. 3 (color online). BE of graphite as obtained at the VMC
(black solid circles) and LRDMC (red squares) level of theory,
using a 2� 2� 1 supercell, and at the LRDMC level (blue
triangles) with a 2� 2� 2 supercell. All data include finite-
size corrections using the scheme of Ref. [23]. Dotted lines and
solid lines are obtained with a fit with the function a expð�DÞ þ
b=D4. The experimental interlayer distance [31] is shown by the
dashed line. The large difference in BE between the 2� 2� 1
and 2� 2� 2 supercell calculations arises from large spurious
interactions between periodic images of planes in the case of the
2� 2� 1 cell. These spurious interactions are still present in the
case of the 2� 2� 2 cell, but they are greatly reduced, as shown
by the difference (�5 meV=atom) of BE obtained with 4 planes
in the cell and the extrapolated value.
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cleavage energy is estimated to be 18% larger than exfo-
liation, on the basis of force field calculations [7]. The
cleavage energy is close to, although not identical to, the
BE defined here [15]. Therefore our comparison with
experiment can only be indirect, as we computed BE while
experiment reports EE. Nevertheless it appears that our
computed BE (�56 meV=atom) is in good agreement with
the estimate for the cleavage energy from the most recent
experiments: 62 meV=atom.We note that in the analysis of
experimental results one makes use of fitted force fields to
evaluate the contribution to EE of carbon-hydrogen bonds.
This is needed because an extrapolation is made on hydro-
carbon adsorption energies, as a function of the number of
C atoms. Although the force field parameters were adjusted
to experimental data, it is unclear whether the assumption
of additivity of forces close to the minimum is fully justi-
fied. In addition, the ratio between EE and BE is at present
unknown and could only be estimated.

While the value of the BE can be extrapolated for an
infinite number of planes (as in Fig. 2), the value of the
equilibrium separation cannot. From the minima of the
curves reported in Fig. 3 we obtain 3.350(24) and 3.243
(26) Å at the VMC and LRDMC level, respectively, for the
2� 2� 1 cell and 3.426(36) Å at the LRDMC level for the
2� 2� 2 cell. Difficulties arising from very flat BE
curves and, most importantly, from the lack of an extrapo-
lation procedure as a function of the number of layers
prevent us from finding a fully converged equilibrium
bond length. The value found for the 2� 2� 2 cell is in
good agreement with experiment (2% overestimate) [30].

In conclusion, we have investigated the bonding prop-
erties of graphite in AB stacking, providing for the first
time an estimate of the binding energy and long-range
behavior of the total energy based on ab initio, many-
body theory. Our calculated binding energy is in good
agreement with most recent experiments, providing a
benchmark result for future calculations and further ex-
perimental measurements. The interaction energy between
planes varies as D�4:2, i.e., with a power law close to that
found for two semiconducting planes.
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