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Ultrathin crytalline solid films are found to dewet with a faceted rim. In the case of heterogeneous

dewetting initiated from a linear trench or from periodically arranged holes, the dewetted area expands

either with a faceted multilayer rim or in a layer-by-layer fashion. In the case of homogeneous dewetting,

holes are accompanied with multilayer rims and the uncoverage increases as a power law of time. Results

of kinetic Monte Carlo simulations are elucidated within the frame of nucleation theory and surface

diffusion limited dynamics.
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Solid films with submicron thicknesses may break up
into islands to lower their energy. Such a ‘‘dewetting’’
process was observed in many experimental systems [1–
6]. Up to now, the theoretical analysis of solid-film dewet-
ting has been based on the Mullins continuum model for
surface diffusion [7]. This approach predicts the formation
of a smooth dewetting rim at the edge of the film, with

scaling laws for the increase of the radius of a hole �t1=4

[8], and for the position of straight fronts �t2=5 [9].
However, the presence of facets, the evolution of which
is controlled by 2D nucleation, leads to novel phenomena
which cannot be accounted for within the frame of the
Mullins model. Examples include the relaxation of nano-
crystals [10,11], the drift of islands on vicinal substrates
[12], layer-by-layer dewetting of ice islands [13], or the
formation of labyrinthine patterns of bilayer islands during
the dewetting of a monolayer [14].

In this Letter, we show that the dewetting of solid films
from two to several atomic layers thick is drastically
affected by the presence of facets. The results of our kinetic
Monte Carlo (KMC) simulations agree with an analysis
based on 2D nucleation theory and diffusion-limited dy-
namics. When dewetting is heterogeneous, i.e., dewetting
is initiated at preexisting holes, or at the film edge, two
regimes are obtained. A regime with a faceted multilayer

rim, where the front position scales as t1=2, and a layer-by-
layer dewetting regime where a monolayer island
nucleated far from the dewetting front invades the whole
film. In contrast, during homogeneous dewetting, where
holes arise from fluctuations in a perfect and clean system,
multilayer rims always form.

We use the solid on solid KMC model of Ref. [14]. On a
square lattice with lattice unit a and periodic boundary
conditions, the local height is z � 0. The substrate surface,
at z ¼ 0, is flat and frozen. Epilayer atoms hop to nearest

neighbor sites with rates �0e
�E=T , where �0 is an attempt

frequency, and T is the temperature (in units with kB ¼ 1).

The hopping barrier is E ¼ nJ � �z;1ES, where n is the

number of in-plane nearest neighbors, J is the bond energy,
� is the Kronecker symbol, and ES is the adsorbate-
substrate excess energy. Our energy unit is J, so that J ¼
1. When ES � 1, the energy is minimized by creating high
islands [14]. When ES ! 0 the epilayer spreads on the
substrate. We choose 0:3< T < 0:6, high enough to allow
for significant mass transport, but lower than the rough-
ening temperature so that facets are present (as in typical
dewetting experiments).
Heterogeneous dewetting.—In our first type of initial

condition, a straight trench is drawn throughout a film of
thickness h along the (01) axis, hereafter denoted as y. One
of the two straight dewetting fronts is shown in Fig. 1(a).
The fronts move in opposite directions so as to increase the
width of the trench. For large ES and small h, a multilayer
rim forms. As shown on Fig. 1(a), each additional layer in
the rim is formed after the previous one has been com-
pleted, so that the rim is faceted. The density of nucleation
events decreases rapidly with the height of the rim, and in
the late stages, only one nucleation event occurs for the
formation of a new layer.
We shall now propose a model for the evolution of the

rim height h1, the position of the film edge x1, and of the
rim width ‘ ¼ x2 � x1. Assuming diffusion-limited mass
transport on the rim facet, and translational invariance
along y, we expect

h1@tx1 ¼ �a2D@xcðx1Þ þ ðx2 � x1Þ@th1; (1)

ðh1 � hÞ@tx2 ¼ �a2D@xcðx2Þ; (2)

where D and cðxÞ are the diffusion constant and concen-
tration of adatoms on the rim facet. The last term in Eq. (1)
accounts for the possible nucleation of new layers. On the
rim facet, where x1 � x � x2, c obeys a quasistatic diffu-
sion equationD�c ¼ 0. We assume local equilibrium with
concentrations ceqð1þ �Þ at x1, and ceq at x2. Model
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parameters are related to the KMC parameters: D ¼
a2�0=4, and ceq ¼ a�2e�2J=T [14]. Moreover, local equi-

librium at x1 imposes � ¼ exp½ES=h1T� � 1.
Combining Eqs. (1) and (2), we obtain mass conserva-

tion as

x1h ¼ ðx2 � x1Þðh1 � hÞ þ C; (3)

where C is a constant. On the rim facet, @xcðxÞ ¼
�ceq�=‘, so that using Eqs. (1) and (2), x1 can be written

as a function of h1:

x1 ¼ C

h
þ ð2a2DceqÞ1=2H�1

1

�Z t

t0

dt0H0
1�

0
�
1=2

; (4)

where H1 ¼ ðh�1 � h�1
1 Þ�1, t0 is a constant, and 0 indi-

cates that t ! t0.
The rim height h1 increases via the nucleation of new

layers on the rim facet. The typical distance between

nucleation events is Lnucjzip ¼ ðVzip=J Þ1=2, where J is

the monolayer island nucleation rate per unit rim length,
and Vzip is the zipping velocity of the monolayer along the

rim. When the system length L along y is larger than
Lnucjzip, multiple nucleation events occur on the top facet,

and we expect @th1 ¼ ðVzipJ Þ1=2. In the single nucleation

regime where L< Lnucjzip, we expect @th1 ¼ LJ . As a

summary:

@th1 ¼ J min½L;Lnucjzip� ¼ min½LJ ; ðVzipJ Þ1=2�: (5)

The next paragraphs are devoted to the evaluation of J
and Vzip. Let us start with J . The local chemical potential

on the rim facet is �� � Tðc=ceq � 1Þ. Since the KMC

temperature is high, the step tension � is isotropic and a
small nucleating island is circular with a radius r.
Assuming r � x2 � x1, the island Gibbs free energy
reads: G ¼ 2�r�� �r2��=a2. The island critical radius
is rc ¼ �a2=��, and the nucleation barrier is Gc ¼
��2a2=��. The nucleation rate per unit area is then given
by the standard relation [15]

I ¼ a�2�þc

��Gð2Þ
c

2�T

�
1=2

e�Gc=T; (6)

where �þc ¼ 2�rccðxÞD=a [14] is the rate of attachment

of atoms to the island when r ¼ rc, and Gð2Þ
c is the second

derivative of G with respect to the number of atoms in the
island, at r ¼ rc. In the limit ES � Th1, and TES �
��2a2h1, the rate J ¼ R

x2
x1
dxI reads

J ¼ ‘
Dceq

a2

�
ES

Th1

�
3=2

�
T2

��2a2

�
e���2a2h1=ðTESÞ; (7)

where ‘¼x2�x1 is a function of h1 from Eqs. (3) and (4).
We turn to the evaluation of Vzip. The only available

length scale for a monolayer island on the rim facet grow-
ing along the dewetting front as in Fig. 1(a) is the mono-
layer edge curvature �. We therefore expect:

Vzip � a2Dceq�

�
ES

Th1
� a2��

T

�
: (8)

The selected curvature is the one which maximizes the
velocity: � ¼ ES=ð2a2�h1Þ, so that

Vzip � Czipa
2Dceq

E2
S

a2Th21�
; (9)

where Czip is an unknown number. Measurements from

KMC simulations in a 1000	 1000 system with h1 ¼ 7
and 8 indicate that Czip � 0:25
 0:05 [16].

Using Eqs. (7) and (9) to evaluate Lnucjzip, the transition
from multiple to single nucleation event per layer at L ¼
Lnucjzip is obtained for h1 � 6:5whenL ¼ 1000,ES ¼ 0:5,

and T ¼ 0:4, in good agreement with KMC. The evolu-
tions of h1 and x1 are obtained by numerically solving
Eqs. (4) and (5) with C ¼ 0 and t0 ¼ 0 (corresponding to
x1 ¼ x2 ¼ 0 at t ¼ 0). The solution is seen to agree quan-
titatively with KMC in Fig. 2(a) (simulations with h ¼ 4
give similar results). This agreement relies on the accurate
effective value � � 0:42 at T ¼ 0:4, extracted from the
Ising model [14,17]. Finally, since the increase of h1 slows
down exponentially from Eqs. (5) and (7), one obtains

x1 � t1=2 from Eq. (4) in the late stages.
Our second type of initial condition for KMC simula-

tions mimics heterogeneous dewetting from holes resulting
either from lithography or heterogeneous nucleation. We
start with a periodic array of holes in a film of thickness
z ¼ h, using a square periodic box of size LH with one
hole. The initial hole diameter is much smaller than LH,
but larger than the hole critical size, so that the hole grows
irreversibly. A faceted multilayer rim forms for large ES,

FIG. 1 (color online). KMC simulations with T ¼ 0:4 and h ¼
3. Black lines indicate atomic steps. (a) Detail of the initial
stages of a 600	 1000 simulation with Es ¼ 0:5. A faceted rim
forms. (b),(c) Dewetting from one hole in a 400	 400 system.
(b) A rim forms at ES ¼ 0:4. (c) Layer-by-layer dewetting at
ES ¼ 0:25.
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small h, and large LH. The resulting evolution is reported
in Fig. 1(b). Following the same lines as for the straight
front, we obtain a model for the dynamics of a circular rim
around a hole. The variables are now R1, the hole radius,
and R2, the hole plus rim radius. Solving the diffusion
equation on the rim leads to

h1@tR
2
1 ¼

4a2Dceq�

lnðR2=R1Þ þ ðR2
2 � R2

1Þ@th1; (10)

and mass conservation reads

h�R2
1 ¼ ðh1 � hÞð�R2

2 � �R2
1Þ þ CA: (11)

In the late stages when R1 � ðCA=�hÞ1=2, one finds
R2
1�4a2Dceq

h1�h

h1

Z t

0

dt0�0

ðh01�hÞln½h01=ðh01�hÞ� : (12)

The total nucleation rate on the top facet is K ¼RR2

R1
dr2�rIðrÞ. From Eq. (6) in the limit ES � Th1, and

2TES ln½R2=R1� � ��2a2h1, we obtain

K ¼ 2R2
2

a4
ln

�
R2

R1

�
Dceq

T1=2E3=2
S

h3=21 �2
e���2a2h1=ðTESÞ: (13)

From an analogy to Eq. (5) when R2 � R1 � R1, we have

@th1 ¼ min

�
K;

�
VzipK

2�R1

�
1=2

�
: (14)

The numerical solution of Eqs. (10), (11), and (14) with

R1 ¼ R2 ¼ ðA0=�Þ1=2 at t ¼ 0, shown in Fig. 2(b), is in
good agreement with the simulations. Since the evolution
of h1 slows down exponentially with time from Eqs. (13)

and (14), one finds R1 � R2 � t1=2 for large times from
Eq. (12).
For smaller ES, larger h, and smaller LH, a different

regime is observed in KMC simulations. The case of a hole
in a square box is shown on Fig. 1(c). Two-dimensional
nucleation usually occurs far from the dewetting front.
After nucleation, the monolayer island grows, closes
around the hole, and invades the whole film. The process
is repeated, and the increase of the film height thus pro-
ceeds in a layer-by-layer fashion. A similar regime exists
for straight fronts, but we shall restrict the discussion to the
case of holes.
Comparing the island nucleation time 1=ðIL2

HÞ and the
concentration relaxation time L2

H=D, nucleation is found to
occur anywhere on the film with equal probability if LH <

Lfar, and in the vicinity of the hole if LH > Lfar, with Lfar ¼
ðD=IÞ1=4. Assuming that the chemical potential is homo-
geneous on the film, we have�� ¼ ES=ðThÞ, so that using
Eq. (6):

Lfar ¼ c1=4eq

a1=2

�
ES

Th

�
1=8

e��
2a2h=ð4ESTÞ: (15)

The nucleated monolayer island then grows by mass
transfer from the hole, reaches the hole, and closes around
it (with velocity Vzip). After the rim closure, the evolution

is modeled by a circular monolayer rim. From Eq. (12)
with h1 ¼ hþ 1 and @th1 ¼ 0, we obtain

R1 � 2a

�
Dceq�

ðhþ 1Þ ln½hþ 1� t
�
1=2

: (16)

In Fig. 2(c), Eq. (16) is seen to agree with KMC simula-
tions up to a prefactor of about 15%, even though the
monolayer rim is not perfectly circular.
Before the monolayer rim has invaded the whole film, a

new island will be nucleated above it if
Rtinv
0 dtK> 1,

where tinv is the time for the monolayer rim to invade the
whole system. This condition is rewritten asRLH

R0
dR1KðR1Þ=@tR1 > 1, where R0 is the initial hole

radius. Using Eqs. (13) and (16) in the limit R0 � LH,
we find that nucleation occurs on the monolayer rim before
it has invaded the full system if LH > L2, with

L2 ¼ 23=4�1=2a3=2�1=2e��
2a2ðhþ1Þ=ð4ESTÞ

E1=8
S T3=8ðhþ 1Þ1=8 ln½hþ 1�1=2 : (17)

Choosing T ¼ 0:4, h ¼ 3, and LH ¼ 400, Eqs. (15) and
(17) indicate a narrow transition. Indeed, Lfar, L2 >LH

when ES < 0:21, and Lfar, L2 < LH when ES > 0:27. This
is in qualitative agreement with KMC simulations, where a
layer-by-layer regime with a single nucleation event far
from the hole is found for ES � 0:25, and a multilayer rim
forms for ES � 0:35.
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FIG. 2 (color online). (a) Position x1 and rim height h1 for a
straight front. Symbols: KMC with L ¼ 1000, T ¼ 0:4, ES ¼
0:5, h ¼ 3. Solid lines: model Eqs. (4) and (5). h1 saturates,
whereas x1 � t1=2 asymptotically. (b) A similar behavior is found
for the rim height h1 and radius R1 of a hole. Symbols: KMC
with LH ¼ 800, A0 ¼ 225, T ¼ 0:4, ES ¼ 0:5, and h ¼ 3. Solid
lines: numerical solution of Eqs. (10), (11), and (14). (c) Area A1

of a hole in the presence of a monolayer rim. KMC with LH ¼
400, T ¼ 0:4, and various (ES, h, A0): � (0.2, 2, 144); h (0.17,
2, 144); e (0.25, 3, 576); 4 (0.3, 3, 576). Solid line: Eq. (16)
with A1 ¼ �R2

1 � t and a prefactor between 0.88 and 1.15.

PRL 103, 195501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 NOVEMBER 2009

195501-3



Homogeneous Dewetting.—Starting from a perfect layer
of height h, we wait for the spontaneous formation of
holes, and monitor the subsequent dewetting process

shown in Fig. 3(a). The hole nucleation rate is IH �
e�GHc=T , where GHc is the hole nucleation barrier.
Assuming that the hole edge is a bunch of h noninteracting
atomic steps, one finds GHc � �h2a2�2=ES. The area of a
hole is growing as A ¼ fðtAÞ, where tA is the time since the
birth of the hole. From Eq. (12), fðtÞ � DHt, whereDH is a

constant. Thus, the typical distance between holes LH-H �
ðDH=IHÞ1=4 � e�h

2a2�2=4EST is much larger than L2 �
e�ðhþ1Þa2�2=4EST when h > 1. Hence, multilayer rims al-
ways form in homogeneous dewetting when h > 1.

Let us define the uncoverage � as the fraction of the sub-
strate uncovered by the dewetting process. In the early
stages, before the holes come into contact ��
IH

R
t
0dt

0fðt0Þ. Since fðtÞ � DHt, we expect �� t2. In

Fig. 3(b), this scaling law is seen to be in good agreement
with the simulations.

In the presence of preexisting holes with a periodicity
LH, dewetting is expected to be predominantly heteroge-
neous when LH � LH-H, and homogeneous when LH �
LH-H. Though LH-H depends on the hole nucleation barrier
GHc whose quantitative expression is missing, the approxi-
mation mentioned above GHc � �h2a2�2=ES correctly
predicts that homogeneous nucleation dominates for small
h and large ES, in qualitative agreement with KMC
simulations.

Four remarks are in order. First, the dewetting dynamics
with h � 2 not only differs from the results of the Mullins

model, it also differs from the dewetting of a monolayer
(h ¼ 1), where the motion of a straight front and the
opening of dewetting zones proceed at constant velocity,
i.e., they both scale as t, so that �� t3 [14].
Second, the analysis of the Mullins model in the litera-

ture has revealed two instabilities: (i) the formation of
holes behind the rim [1,9]; (ii) the breakup of the rim via a
Rayleigh-Plateau-like pinching [18]. The latter is a candi-
date for the initiation of fingers observed in SOI (Si=SiO2)
systems [2]. But no instability was observed in our simula-
tions, in agreement with experiments with SOI systems [4],
where no trace of the instability was found for h < 4 nm.
These results show that the instabilities do not have enough
time to develop before holes meet in very thin films.
Third, we have assumed diffusion-limited dynamics, but

attachment-detachment at atomic steps could be the limit-
ing process at lower temperatures, as in Ref. [14]. Different
scaling laws are then expected.
Finally, we have discussed dewetting starting from

holes. By analogy, we expect similar regimes for islands
of lateral size LH. For a given height, small islands should
dewet in a layer-by-layer fashion, while large ones should
exhibit multilayer dewetting rims. The former regime was
observed recently in the dewetting of ice films [13].
As a conclusion, we have investigated the dewetting of

ultrathin solid films. The faceting of the rims leads to a

characteristic t1=2 power-law for the motion of dewetting
fronts. A layer-by-layer dewetting regime was found to
occur only for heterogeneous dewetting with small dis-
tances between the preexisting holes.
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and ‘‘DéFiS’’ ANR-PNANO grants, and from JSPS grants.

[1] E. Jiran and C. Thompson, Thin Solid Films 208, 23 (1992).
[2] B. Yang et al., Phys. Rev. B 72, 235413 (2005).
[3] B. Krause et al., J. Chem. Phys. 119, 3429 (2003).
[4] Z. Burhanudin et al., Thin Solid Films 508, 235 (2006).
[5] R. Saxena et al., Phys. Rev. B 72, 115425 (2005).
[6] M. Coll et al., Phys. Rev. B 73, 075420 (2006).
[7] W. Mullins, J. Appl. Phys. 28, 333 (1957).
[8] D. Srolovitz and S. Safran, J. Appl. Phys. 60, 255 (1986).
[9] H. Wong et al., Acta Mater. 48, 1719 (2000).
[10] N. Combe, P. Jensen, and A. Pimpinelli, Phys. Rev. Lett.

85, 110 (2000).
[11] W. Mullins and G. S. Rohrer, J. Am. Ceram. Soc. 83, 214

(2000).
[12] W. Ling et al., Surf. Sci. Lett. 570, L297 (2004).
[13] K. Thürmer and N. C. Bartelt, Phys. Rev. Lett. 100,

186101 (2008).
[14] O. Pierre-Louis, A. Chame, and Y. Saito, Phys. Rev. Lett.

99, 136101 (2007).
[15] See, e.g., Y. Saito, Statistical Physics of Crystal Growth

(World Scientific, Singapore, 1996).
[16] The measurement is actually indirect, and will be dis-

cussed in detail elsewhere.
[17] B. Krishnamachari et al., Phys. Rev. B 54, 8899 (1996).
[18] W. Kan and H. Wong, J. Appl. Phys. 97, 043515 (2005).

0

9

6

3

.
12

15(a)

10
3

10
4

10
5

10
6

10
7

t

10
-4

10
-2

10
0

θ

(b)

FIG. 3 (color online). (a) Snapshots of a 1000	 1000 KMC
simulation, with h ¼ 3, T ¼ 0:5, and Es ¼ 0:7, at t ¼ 1:6	
106, and 4:1	 106. (b) Uncoverage in KMC during homoge-
neous dewetting. Solid lines are guides to the eye �t2. Symbols
represent KMC simulation with h ¼ 2 and (T, ES): � (0.4, 0.5);
h (0.5, 0.7); e (0.4, 0.7); 4 (0.5, 0.3); System sizes are 600	
600 or 400	 400. v correspond to the parameters of (a).
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