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We analyze the radiation from a charged particle crossing the boundary between an ordinary medium

and a ‘‘left-handed’’ metamaterial. We obtain exact and approximate expressions for the field components

and develop algorithms for their computation. The spatial radiation in this system can be separated into

three distinct components, corresponding to ordinary transition radiation having a relatively large

magnitude, Cherenkov radiation, and reversed Cherenkov-transition radiation (RCTR). The last one is

explained by reflection and refraction of reversed Cherenkov radiation at the interface. Conditions for

generating of RCTR are obtained. We note properties of this radiation that have potential applications in

the detection of charged particles and accelerator beams and for the characterization of metamaterial

macroscopic parameters (", �).
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In the 1960s, Veselago introduced the concept of ‘‘left-
handed media’’ (LHM), i.e., media having simultaneously
negative permittivity and permeability [1,2]. In LHM, the
electric field vector, magnetic field vector, and wave vector
form a left-handed orthogonal set. The direction of the
energy flow and the direction of the phase velocity are
opposite in LHM, resulting in very unusual properties of
electromagnetic waves propagating in these media.

Note that the ‘‘left-handed’’ properties can be realized
only in a limited frequency range [1,2]. Therefore, it would
be more correct to refer to a ‘‘left-handed frequency band’’
(LHFB) as opposed to a ‘‘right-handed frequency band’’
(RHFB) where the familiar properties of the medium oc-
cur. However, the term LHM is widespread now in the sci-
entific literature, and we will use it as well, with the under-
standing that a LHM is a medium possessing a LHFB.

Artificial materials possessing left-handed properties in
the gigahertz frequency band have been demonstrated
recently (see, for example, [3–6]). These metamaterials
(MTMs) are composed of discrete conducting elements
having their size and spacing much smaller than the wave-
lengths of interest. Therefore, such media can be described
by the macroscopic parameters "ð!Þ and �ð!Þ.

Radiation from a charge traversing the interface between
two media is one of the principal problems of electro-
dynamics. In the case of ordinary (‘‘right-handed’’) media
(RHM), this question was investigated as early as 1946
[7,8]. The case of an interface between RHM and LHM
was partially discussed in [9,10]. However, a quantitative
investigation of the field was not performed.

Cherenkov radiation (CR) in LHM has been investigated
in more detail [11–14]. In particular, it was shown that the
moving particle generates both ordinary (forward) and
reversed (backward) CR [11].

We analyze the electromagnetic field generated by a
small bunch with a charge q passing through the interface
(located at z ¼ 0) separating two homogeneous isotropic
frequency dispersive media described by permittivity and
permeability: "1ð!Þ,�1ð!Þ for z < 0 and "2ð!Þ,�2ð!Þ for
z > 0 (Fig. 1). There are no surface charges and currents
located at z ¼ 0. The bunch moves uniformly along the z
axis in accordance with z ¼ Vt ¼ c�t. The dimensions of
the bunch are assumed to be negligible. Therefore, the

charge density � and the current density ~j ¼ j ~ez can be
written in the form

� ¼ q�ðxÞ�ðyÞ�ðz� VtÞ; j ¼ V�: (1)

Further, we will assume that both media possess nonzero
losses, resulting in small positive values of Im"1;2 > 0 and

Im�1;2 > 0. We will let these terms go to 0 in final results.

The medium filling the volume z < 0 is right-handed, that
is, Re"1 > 0, Re�1 > 0 for all frequencies where
Re"1Re�1 > 0. The medium filling the region z > 0 is
supposed to have both RHFB and LHFB for propagating
waves: (I) RHFB where Re"1 > 0, Re�1 > 0 and
(II) LHFB where Re"1 < 0, Re�1 < 0. The conditions of

continuity of tangential components of electric ( ~E) and

magnetic ( ~H) strengths must be satisfied in the plane z¼0.
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FIG. 1. Geometry of the problem.
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It is easy to show that the general solution of the problem
can be written in the same form as in the case of two RHMs
[7,8]. If the index 1 refers to the area z < 0 and the index 2
refers to the area z > 0, then we can write
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where Hð1Þ
0 ð�Þ is the Hankel function, J0ð�Þ is the Bessel

function, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, s1;2ð!Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

�2c2
ðn21;2�2 � 1Þ

q
,

kz1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2n2

1;2

c2
� k2�

r
, n21;2 ¼ "1;2�1;2, g1;2 ¼ k2� � s21;2,

g3 ¼ "1kz2 þ "2kz1, and the functions s1;2, kz1;2 are deter-
mined according to the rules

Im s1;2 > 0; Imkz1;2 > 0: (8)

Fourier harmonics of the fields are determined by the

formulas ~E! ¼ �r�! þ i!c�1 ~ezA!, ~B! ¼ rotð ~ezA!Þ.
The potentials Aq

1;2, �
q
1;2 describe the so-called ‘‘forced’’

field or the charge field in the corresponding unbounded
medium [8]. These potentials describe CR if the charge
velocity exceeds the Cherenkov threshold. The potentials
Ab
1;2, �

b
1;2 describe the so-called ‘‘free’’ field arising from

the discontinuity in the medium properties in the plane z ¼
0. The conditions (8) mean that the Fourier component of
the forced field must exponentially decay with increasing
distance � from the charge trajectory and that the Fourier
component of the free field must exponentially decrease
with increasing distance jzj from the boundary.

In the region z < 0 (RHM), we have Res1 > 0, Rekz1 >
0 for all frequencies. In the region z > 0 (LHM), one
obtains that Res2 > 0, Rekz2 > 0 for the RHFB but Res2 <
0, Rekz2 < 0 for the LHFB. The same results can be
obtained for lossless media if the so-called Mandelshtam
condition is used. According to this condition, the group
velocity (and the energy flow density) of the forced field
and free field must be directed away from the charge
trajectory and away from the boundary, respectively.
Since the group velocity is parallel to the phase velocity

for RHFB and antiparallel for LHFB, we arrive at the
aforementioned conclusions.
Two methods were used to investigate integrals (5)–(7),

and both of them extensively use the techniques of com-
plex function theory. Note that we had previously devel-
oped such an approach for analysis of CR in passive and
active RHM [15–18]. In the first method, we used the
steepest descent technique and obtained asymptotic ex-
pressions for (5) that are valid for!c�1jn1;2jR � 1, where

R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
. The most interesting and novel effects are

connected with the saddle point contribution [determining
transition radiation (TR)] and especially with the contri-
bution of one of the poles [indicated below as reversed
Cherenkov-transition radiation (RCTR)]. Note that the
asymptotic expression obtained is valid regardless of the
distance between the saddle point and this pole in the
complex plane (it is uniform).
In the second method, we produced an effective algo-

rithm for numerical computation of integral (5) using a
transformation of the integration path in the complex
plane. The results of both methods were in a good agree-
ment in the domain of their asymptotic validity. The results
presented below were obtained using the second method.
The typical behavior of the Fourier harmonics of the full

field (“forced”þ “free”) on the semicircle R ¼ const in
the xz plane (dashed line in Fig. 1) is shown in Figs. 2–4.
The angle � increases from 0 (negative part of the z axis) to
� (positive part). The half-space z < 0 is assumed to be
vacuum. We compare two cases: the frequency under
consideration is in the RHFB for the second medium
(case 1) or in the LHFB (case 2).
The situation where the charge velocity does not exceed

the Cherenkov threshold for the medium (�<�CR ¼
jn2j�1) is presented in Fig. 2. One can see that, as a rule,
TR in vacuum in the case of an electron crossing a vacuum-
LHM boundary is much larger than in the case of a
vacuum-RHM transition.
The situation where the charge velocity exceeds the

Cherenkov threshold is shown in Figs. 3 and 4. In the
ordinary case of the vacuum-RHM interface, the Fourier
harmonic of the fields is relatively small both in the whole
vacuum half-space and in the medium outside of the
Cherenkov cone (� < 130� in Fig. 3). In the case of
vacuum-LHM interface, the Fourier harmonic is of the
same order of magnitude all over the whole half-space z >
0 (Fig. 4 for �> 0:7). The important finding here is that a
significant electromagnetic field can be observed in vac-
uum for a certain range of charge velocities. This effect is
explained by the reversed CR in the LHM: the energy flux
density of CR forms an obtuse angle with the direction of
the charge motion (Fig. 5, top). Therefore, CR falls on the
boundary and produces both the reflected and transmitted
fields. We call these fields the reversed Cherenkov-
transition radiation because they possess certain features
of both CR and TR. Actually, RCTR is generated during
the whole time the charge moves in the medium, similar to
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CR but in contrast to the TR generated in a small part of the
charge trajectory close to the boundary (the formation
length [8]). On the other hand, the necessary condition
for RCTR excitation is the presence of the interface, simi-
lar to TR. Another essential difference between CR and
RCTR is that the RCTR in vacuum consists of waves
propagating both away from the z axis and towards it.
The fact is that the law of refraction at the LHM-RHM
interface is an unusual one: the power flux density of the
transmitted wave has opposite tangential projection with
respect to the incident wave [2]. Therefore, in the vacuum
half-space we obtain interference of the waves transmitted

from different parts of the boundary. The reflected wave of
RCTR interferes with reversed CR in the area outside of
some cone (Fig. 5, bottom). One can see evident interfer-
ence effects at angles � < 50� for � ¼ 0:85 and at angles
90� < �< 130� for � ¼ 0:99 in Fig. 4.
Analytically, the RCTR is the contribution of a pole

giving a cylindrical wave. This contribution appears
when transformation of the initial integration path to the
steepest descent path is accompanied by the intersection of
this pole. Our analysis gives the following condition for the
presence of RCTR in the vacuum area: �CR <�<�TIR,
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FIG. 4 (color online). Modification of the spatial distribution
of the electric field Fourier harmonic ReE�! ðVm�1 sÞ with an

increase in � for a vacuum-LHM interface. Parameters are the
same as in Fig. 2; �CR ¼ 0:7, �TIR ¼ 0:98.
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FIG. 2 (color online). Dependence of the electric field Fourier
harmonic ReE�! ðVm�1 sÞ on the angle � for a charged particle

crossing the vacuum-RHM (top) and the vacuum-LHM (bottom)
boundary for velocities below the Cherenkov threshold �<
�CR ¼ 0:7; " ¼ 1:7, � ¼ 1:2 for RHM, " ¼ �1:7, � ¼ �1:2
for LHM; q ¼ �1 nC, � ¼ 10 GHz, and R ¼ 15 cm. The val-
ues of � are indicated near the curves.
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FIG. 3 (color online). Dependence of the electric field Fourier
harmonic ReE�! ðVm�1 sÞ on the angle � for vacuum-RHM

transition and for �> �CR ¼ 0:7. Other parameters are the
same as in Fig. 2. The values of � are indicated near the curves.
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with �TIR ¼ ðn22 � n21Þ�1=2. The lower threshold of RCTR
is the Cherenkov threshold for the medium. The upper
threshold is explained by the total internal reflection. It
should be noticed that the upper threshold �TIR is essential
for n22 > 1þ n21 only (otherwise �TIR > 1). The condition
for the existence of RCTR in the medium is �> �CR.

In conclusion, we have shown that three types of spatial
radiation can be generated in the case of an interface
between vacuum and LHM. The first type of radiation is
transition radiation which is generated for any properties of
the medium. For LHM, TR has, as a rule, relatively large
magnitude. The second type of radiation is Cherenkov
radiation generated in the medium for charge velocities
exceeding the Cherenkov threshold. The third type of
radiation is reversed Cherenkov-transition radiation, gen-
erated in the case when the medium is left handed.
Generation of RCTR takes place only if the charge velocity
lies between certain lower and upper thresholds. Note that
we consider the RHM-isotropic LHM interface in this
Letter. It should be noted that the RCTR effect can, in
principle, occur in the case of an interface between an
isotropic and a specific anisotropic medium because re-
versed CR is possible in anisotropic media as well [19].

The properties of the RCTR offer the prospect of new
capabilities for detection of charged particles. They allow
the design of a detector for charged particles having two
energy thresholds. This system would be sensitive, for
example, to particles with energies lying within the energy

range defined by the two thresholds. Note that another
active area of research is the determination of the fre-
quency dependent bulk permittivity and permeability of
metamaterials from scattering measurements [6,20]. The
spectrum of RCTR generated by a monoenergetic electron
bunch provides independent information on the macro-
scopic properties (", �) of the LHM structure that can be
used for characterization of the LHM.
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FIG. 5 (color online). Top: wave vectors and power flux den-
sities of CR and RCTR (reflected and transmitted waves).

Bottom: the lines are parallel to the power flux density ~S of
CR, the reflected wave, and the transmitted wave; one can see
areas of interference.
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